

REGIONE SICILIANA

COMUNE DI RAMACCA CITTA' METROPOLITANA DI CATANIA

PROGETTO ESECUTIVO

Lavori di "Rigenerazione urbana del centro abitato di Ramacca, volto alla riduzione del fenomeno di marginalizzazione e degrado sociale, nonché al miglioramento della qualità del decoro urbano e del tessuto sociale ed ambientale da attuare nei vicoli adiacenti del centro storico"

CUP: F12F22000310001 - CIG: 9569954FDB

Il Progettista:

AB2 Engineering Progettazione e Costruzione S.r.I. Uffici: Via Mons. Domenico Orlando n° 14 - 95126 CATANIA

Il Progettista indicato e Direttore Tecnico Ing. Antonino BELPASSO

II R.U.P.:

Geom. Salvatore SOTTOSANTI

Il Progettista architettonico Ing. Alessia LEANZA

Gruppo di lavoro: Ing. Claudia GULLOTTO (C.S.P.) Ing. Sergio BONFISSUTO Dott. Geol. Alessio D'URSO Visti e approvazioni:

PROGETTO: TABULATI DI CALCOLO MURI IN C.A.

ELABORATO PROG. REV.

ST 05 0

CARTELLA PRO	N. GEN. ELAB. 047	FILE NAME ST.05_0	NOTE			SCALA	
1							
0	EMISSIONE			APRILE 2023	A.L.	C.G.	A.B.
REV.		DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

COMUNE DI	RAMACCA
PROVINCIA	DI CATANIA

TABULATI DI CALCOLO

OGGETTO:	CALCOLO MURO 1 IN C.A.
COMMITTENTE:	COMUNE DI RAMACCA

RELAZIONE DI CALCOLO

Sono illustrati con la presente i risultati dei calcoli che riguardano il calcolo delle spinte, le verifiche di stabilità e di resistenza di muri di sostegno.

NORMATIVA DI RIFERIMENTI

I calcoli sono condotti nel pieno rispetto della normativa vigente e, in particolare, la normativa cui viene fatto riferimento nelle fasi di calcolo, verifica e progettazione è costituita dalle *Norme Tecniche per le Costruzioni*, emanate con il D.M. 17/01/2018 pubblicato nel suppl. 8 G.U. 42 del 20/02/2018, nonché la Circolare del Ministero Infrastrutture e Trasporti del 21 Gennaio 2019, n. 7 "*Istruzioni per l'applicazione dell'aggiornamento delle norme tecniche per le costruzioni*".

CALCOLO DELLE SPINTE

Si suppone valida l'ipotesi in base alla quale la spinta attiva si ingenera in seguito al movimento del manufatto nella direzione della spinta agente. Le ipotesi di base per il calcolo della spinta sono le seguenti, le medesime adottate dal metodo di calcolo secondo *Coulomb*, con l'estensione di *Muller-Breslau* e *Mononobe-Okabe*:

- In fase di spinta attiva si crea all'interno del terrapieno un cuneo di spinta, che si distacca dal terreno indisturbato tramite linee di frattura rettilinee, lungo le quali il cuneo scorre generando tensioni tangenziali dovute all'attrito.
- Sul cuneo di spinta agiscono le seguenti forze: peso proprio del terreno, sovraccarichi applicati sull'estradosso del terrapieno, spinte normali alle superfici di scorrimento del cuneo (da una parte contro il paramento e dall'altra contro la porzione di terreno indisturbato), forze di attrito che si innescano lungo le superfici del cuneo e che si oppongono allo scorrimento.
- In condizioni sismiche, al peso proprio del cuneo va aggiunta una componente orizzontale, ed eventualmente anche una verticale, pari al peso complessivo moltiplicato per il prodotto dei coefficienti sismici.
- Il fatto che il muro ha spostamenti significativi fa in modo che l'attrito che si genera è pari al valore massimo possibile, sia in condizioni di spinta attiva che di spinta passiva, quindi le risultanti delle reazioni sulle pareti del cuneo risultano inclinate di una angolo f rispetto alla normale alla superficie di scorrimento.

Il programma *C.D.W. Win*, pur adottando le stesse ipotesi, piuttosto che utilizzare la formula di *Coulomb* in forma chiusa, applica la procedura originaria derivante dall'equilibrio delle forze agenti sul cuneo di spinta, cercando il valore di massimo della spinta per tentativi successivi su tutti i possibili cunei di spinta. Così facendo si possono aggiungere alle ipotesi già indicate le seguenti generalizzazioni, che invece devono essere trascurate utilizzando i metodi classici:

- Il terreno spingente può essere costituito da diversi strati, separati da superfici di forma generica, con caratteristiche geotecniche differenti.
- Il profilo dell'estradosso del terrapieno spingente può avere una forma generica qualsiasi, purché coerente con le caratteristiche del terreno.
- I sovraccarichi agenti sul terrapieno possono avere una distribuzione assolutamente libera.
- Può essere tenuta in conto la coesione interna del terreno e la forza di adesione tra terreno e muro.
- Si può calcolare la spinta di un muro con mensola aerea stabilizzante a monte, al di sotto della quale si crea un vuoto nel terreno.
- È possibile conoscere l'esatto andamento delle pressioni agenti sul profilo del muro anche nei casi sopra detti, in cui tale andamento non è lineare, ma la cui distribuzione incide sul calcolo delle sollecitazioni interne.
- Si può supporre anche l'esistenza una linea di rottura del cuneo interna, che va dal vertice estremo della mensola di fondazione a monte fino a intersecare il paramento, inclinata di un certo angolo legato a quello di attrito interno del terreno stesso. Si può quindi conoscere l'esatta forma del cuneo di spinta, per cui le forze in gioco variano in quanto solo una parte di

esso è a contatto con il paramento. Il peso proprio del terreno portato sarà solo quello della parte di terrapieno che realmente rimarrà solidale con la fondazione e non risulterà interessato da scorrimenti, quindi in generale un triangolo. Ciò fa si che il peso gravante sulla fondazione può risultare notevolmente inferiore a quello ricavato con i metodi usuali, dal momento che una parte è già stata conteggiata nel cuneo di spinta.

Per quanto riguarda la spinta passiva, quella del terrapieno a valle, le uniche differenza rispetto a quanto detto consistono nel fatto che le forze di attrito e di coesione tra le superfici di scorrimento del cuneo hanno la direzione opposta che nel caso di spinta attiva, nel senso che si oppongono a un moto di espulsione verso l'alto del cuneo, e la procedura iterativa va alla ricerca di un valore minimo piuttosto che un massimo.

Nei casi di fondazione su pali o muri tirantati si può ritenere più giusto adottare un tipo di spinta a riposo, che considera il cuneo di terreno non ancora formato e spostamenti dell'opera nulli o minimi. Tale spinta è in ogni caso superiore a quella attiva e la sua entità si dovrebbe basare su considerazioni meno semplicistiche. Il programma opera prendendo come riferimento una costante di spinta pari a:

$$K_o = 1 - 0.9 \times sen \phi$$

essendo \(\phi\) l'angolo di attrito interno del terreno, formula che si trova diffusamente in letteratura. Se tale deve essere la costante di spinta per un terreno uniforme, ad estradosso rettilineo orizzontale e privo di sovraccarichi e di azione sismica, viene ricavato un fattore di riduzione dell'angolo di attrito interno del terreno, tale che utilizzando questo angolo ridotto e la consueta procedura per il calcolo della spinta attiva, la costante fittizia di spinta attiva corrisponda alla costante a riposo della formula sopra riportata.

Una volta ricavato questo fattore riduttivo, il programma procede al calcolo con le procedure standard, mettendo in gioco le altre variabili, quali la sagomatura dell'estradosso e degli strati, la presenza di sovraccarichi variamente distribuiti e la condizione sismica. La giustificazione di ciò risiede nella considerazione in base alla quale in condizioni di spinta a riposo, gli spostamenti interni al terreno sono ridotti rispetto alla spinta attiva, quindi l'attrito che si mobilita è una parte di quello massimo possibile, e di conseguenza la spinta risultante cresce.

In base a queste considerazioni di ordine generale, il programma opera come segue:

- Si definisce la geometria di tutti i vari cunei di spinta di tentativo, facendo variare l'angolo di scorrimento dalla parte di monte da 0 fino al valore limite 90 φ. Quindi in caso di terreno multistrato, la superficie di scorrimento sarà costituita da una spezzata con inclinazioni differenti da strato a strato. Ciò assicura valori di spinta maggiori rispetto a una eventuale linea di scorrimento unica rettilinea. L'angolo di scorrimento interno, quello dalla parte del paramento, qualora si attivi la procedura "Coulomb estes" è posto pari a 3/4 dell'angolo utilizzato a monte. Tale percentuale è quella che massimizza il valore della spinta. È possibile però attivare la procedura "Coulomb classico", in cui tale superficie si mantiene verticale, ma utilizzando in ogni caso l'angolo di attrito tra terreno e muro.
- Si calcola l'entità complessiva dei sovraccarichi agenti sul terrapieno che ricadono nella porzione di estradosso compresa nel cuneo di spinta.
- Si calcola il peso proprio del cuneo di spinta e le eventuali componenti sismiche orizzontali e verticali dovute al peso proprio ed eventualmente anche ai sovraccarichi agenti sull'estradosso.
- Si calcolano le eventuali azioni tangenziali sulle superfici interne dovute alla coesione interna e all'adesione tra terreno e muro.
- In base al rispetto dell'equilibrio alla traslazione verticale e orizzontale, nota l'inclinazione delle spinte sulle superfici interne (pari all'angolo di attrito), sviluppato in base a tutte le forze agenti sul concio, si ricavano le forze incognite, cioè le spinte agenti sul paramento e sulla superficie di scorrimento interna del cuneo.
- Si ripete la procedura per tutti i cunei di tentativo, ottenuti al variare dell'angolo alla base. Il valore massimo (minimo nel caso di spinta passiva) tra tutti quelli calcolati corrisponde alla spinta del terrapieno.

COMBINAZIONI DI CARICO

Il programma opera in ottemperanza alle norme attuali per quanto riguarda le combinazioni di carico da usare per i vari tipi di verifiche. In particolare viene rispettato quanto segue.

- Le verifiche di resistenza del paramento e della fondazione SLU vengono effettuate in base alle combinazioni di carico del tipo A1, riportate nei tabulati di stampa.
- Le verifiche geotecniche di portanza e scorrimento vengono effettuate in base alle combinazioni di tipo A1 e A2, in caso di

approccio del tipo 1, oppure utilizzando le sole combinazioni del tipo A1, in caso di approccio 2.

- Il sisma verticale viene considerato alternativamente in direzione verso l'alto e verso il basso. La spinta riportata nei tabulati si riferisce al caso in cui la spinta risulta maggiore.
- Le verifiche al ribaltamento vengono svolte utilizzando i coefficienti riportati in norma nella tabella 6.2.I secondo le modalità previste dalla norma stessa, annullando quindi i contributi delle singole azioni che abbiano un effetto stabilizzante.
- I coefficienti delle combinazioni di carico riportati nei tabulati di stampa si riferiscono esclusivamente ai sovraccarichi applicati sul terrapieno e sul muro stesso. Il peso proprio strutturale del muro e quello del terreno di spinta vengono trattai in base a quanto prevede la norma per i pesi propri strutturali e non strutturali, a prescindere dai coefficienti utilizzati per le varie combinazioni.

• VERIFICA AL RIBALTAMENTO

La verifica al ribaltamento si effettua in sostanza come equilibrio alla rotazione di un corpo rigido sollecitato da un sistema di forze, ciascuna delle quali definita da un'intensità, una direzione e un punto di applicazione.

Non va eseguita se la fondazione è su pali. Le forze che vengono prese in conto sono le seguenti:

- Spinta attiva complessiva del terrapieno a monte.
- Spinta passiva complessiva del terrapieno a valle (da considerare nella quota parte indicata nei dati generali).
- Spinta idrostatica dell'acqua della falda a monte, a valle e sul fondo.
- Forze esplicite applicate sul muro in testa, sulla mensola area a valle e sulla mensola di fondazione a valle.
- Forze massime attivabili nei tiranti per moto di ribaltamento.
- Forze di pretensione dei tiranti.
- Peso proprio del muro composto con l'eventuale componente sismica.
- Peso proprio della parte di terrapieno solidale con il muro composto con l'eventuale componente sismica.

Di ciascuna di queste forze verrà calcolato il momento, ribaltante o stabilizzante, rispetto ad un punto che è quello più in basso dell'estremità esterna della mensola di fondazione a valle. In presenza di dente di fondazione disposto a valle, il punto di equilibrio è quello più esterno al di sotto del dente.

Ai fini del calcolo del momento stabilizzante o ribaltante, esso per ciascuna forza è ottenuto dal prodotto dell'intensità della forza per la distanza minima tra la linea d'azione della forza e il punto di rotazione. Qualora tale singolo momento abbia un effetto ribaltante verrà conteggiato nel momento ribaltante complessivo, qualora invece abbia un effetto stabilizzante farà parte del momento stabilizzante complessivo. Può quindi accadere che il momento ribaltante sia pari a 0, e ciò fisicamente significa che incrementando qualunque forza, ma mantenendone la linea d'azione, il muro non andrà mai in ribaltamento.

Il coefficiente di sicurezza al ribaltamento è dato dal rapporto tra il momento stabilizzante complessivo e quello ribaltante. La verifica viene effettuata per tutte le combinazioni di carico previste.

• VERIFICA ALLO SCORRIMENTO

La verifica allo scorrimento è effettuata come equilibrio alla traslazione di un corpo rigido, sollecitato dalle stesse forze prese in esame nel caso della verifica a ribaltamento, tranne per il fatto che per i tiranti il sistema di forze è quello che si innesca per moto di traslazione. Ciascuna forza ha una componente parallela al piano di scorrimento del muro, che a seconda della direzione ha un effetto stabilizzante o instabilizzante, e una componente ad esso normale che, se di compressione, genera una reazione di attrito che si oppone allo scorrimento. Una ulteriore parte dell'azione stabilizzante è costituita dall'eventuale forza di adesione che si suscita tra il terreno e la fondazione.

In presenza di dente di fondazione, la linea di scorrimento non è più quella di base della fondazione, ma è una linea che attraversa il terreno sotto la fondazione, e che congiunge il vertice basso interno del dente con l'estremo della mensola di fondazione opposta. In tal caso quindi l'attrito e l'adesione sono quelli interni del terreno. In questo caso viene conteggiato pure il peso della parte di terreno sottostante alla fondazione che nel moto di scorrimento rimane solidale con il muro.

Il coefficiente di sicurezza allo scorrimento è dato dal rapporto tra l'azione stabilizzante complessiva e quella instabilizzante. La verifica viene effettuata per tutte le combinazioni di carico previste.

CAPACITÀ PORTANTE DEL TERRENO DI FONDAZIONE

Nel caso di fondazione diretta, si assume quale carico limite che provoca la rottura del terreno di fondazione quello espresso dalla formula di *Brinch-Hansen*. Tale formula fornisce il valore della pressione media limite sulla superficie d'impronta della fondazione, eventualmente parzializzata in base all'eccentricità. Esiste un tipo di pressione limite a lungo termine, in condizioni drenate, e un altro a breve termine in eventuali condizioni non drenate.

Le espressioni complete utilizzate sono le seguenti:

- In condizioni drenate:

$$Q_{\text{lim}} = \frac{1}{2} \Gamma \cdot B \cdot N_g \cdot i_g \cdot d_g \cdot b_g \cdot s_g \cdot g_g + C \cdot N_c \cdot i_c \cdot d_c \cdot b_c \cdot s_c \cdot g_c + Q \cdot N_q \cdot i_q \cdot d_q \cdot b_q \cdot s_q \cdot g_q$$

- In condizioni non drenate:

$$Q_{\text{lim}} = C_u \cdot N_{c'} \cdot i_{c'} \cdot d_{c'} \cdot b_{c'} \cdot s_{c'} \cdot g_{c'} + Q \cdot i_{a'} \cdot d_{a'} \cdot b_{a'} \cdot s_{a'} \cdot g_{a'}$$

Fattori di portanza, ϕ in gradi:

$$N_q = \tan^2(45^\circ + \frac{\phi}{2}) \cdot e^{\pi \cdot \tan\phi}$$

$$N_c = (N_q - 1) \cdot \cot\phi$$

$$N_{c'} = 2 + \pi$$

$$N_g = 2 \cdot (N_q + 1) \cdot \tan\phi$$

Fattori di forma:

$$\begin{split} s_q &= 1 + 0.1 \cdot \frac{B}{L} \cdot \frac{1 + \sec \phi}{1 - \sec \phi} \\ s_{q'} &= 1 \\ s_c &= 1 + 0.2 \cdot \frac{B}{L} \cdot \frac{1 + \sec \phi}{1 - \sec \phi} \\ s_{c'} &= 1 + 0.2 \cdot \frac{B}{L} \\ s_g &= s_q \end{split}$$

Fattori di profondità, K espresso in radianti:

$$d_q = 1 + 2 \cdot \tan \phi \cdot (1 - \sec \phi)^2 \cdot K$$

$$d_{q'} = 1$$

$$d_c = d_q - \frac{1 - d_q}{N_c \cdot \tan \phi}$$

$$d_g = 1$$

$$\text{dove } K = \frac{D}{B} \text{ se } \frac{D}{B} \le 1 \text{ o } K = arc \tan \frac{D}{B} \text{ se } \frac{D}{B} > 1$$

Fattori di inclinazione dei carichi:

$$\begin{split} i_q &= \left[1 - \frac{H}{V + B \cdot L \cdot C_a \cdot \cot \phi}\right]^m \\ i_{q'} &= 1 \\ i_c &= i_q - \frac{1 - i_q}{N_c \cdot \tan \phi} \\ i_{c'} &= 1 - \frac{m \cdot H}{B \cdot L \cdot C_u \cdot N_c} \\ i_g &= \left[1 - \frac{H}{V + B \cdot L \cdot C_a \cdot \cot \phi}\right]^{m+1} \\ &\quad \text{con } m = \frac{2 + \frac{B}{L}}{1 + \frac{B}{L}} \end{split}$$

Fattori di inclinazione del piano di posa, η in radianti:

$$\begin{split} b_q &= (1 - \eta \cdot \tan \phi)^2 \\ b_{q'} &= 1 \\ b_c &= b_q - \frac{1 - b_q}{N_c \cdot \tan \phi} \\ b_{c'} &= 1 - 2 \cdot \frac{\eta}{N_{c'}} \\ b_g &= g_q \end{split}$$

Fattori di inclinazione del terreno, β in radianti:

$$g_q = (1 - \tan \beta)^2$$

$$g_{q'} = 1$$

$$g_c = 1 - 2 \cdot \frac{\beta}{N_{c'}}$$

$$g_g = g_q$$

essendo:

- Γ = peso specifico del terreno di fondazione

- Q = sovraccarico verticale agente ai bordi della fondazione

- e = eccentricità della risultante M/N in valore assoluto

- $B = B_t - 2 \times e$, larghezza della fondazione parzializzata

- B_t = larghezza totale della fondazione

- C = coesione del terreno di fondazione

- D = profondità del piano di posa

- L = sviluppo della fondazione

- H = componente del carico parallela alla fondazione

- V = componente del carico ortogonale alla fondazione

- Cu = coesione non drenata del terreno di fondazione

- Ca = adesione alla base tra terreno e muro

- η = angolo di inclinazione del piano di posa

- β = inclinazione terrapieno a valle, se verso il basso (quindi ≥ 0)

MURI IN CALCESTRUZZO A MENSOLA

Sulle sezioni del paramento e delle varie mensole, aeree e di fondazione, si effettua il progetto delle armature e le verifiche a presso-flessione e taglio in corrispondenza di tutte le sezioni singolari (punti di attacco e di spigolo) e in tutte quelle intermedie ad un passo pari a quello imposto nei dati generali. Vengono applicate le formule classiche relative alle sezioni rettangolari in cemento armato, con il progetto dell'armatura necessaria.

CALCOLO DEI CEDIMENTI DEL TERRAPIENO A MONTE

Per il calcolo dei cedimenti permanenti causati dall'azione sismica, il programma opera come segue. Innanzitutto vengono calcolate le spinte per una ulteriore modalità di azione sismica, cioè quella relativa allo stato limite di danno (SLD). A seguito del calcolo di tali spinte, per le sole combinazioni sismiche, si calcola lo spostamento residuo del muro per traslazione rigida, ricavato in base alla seguente formulazione di *Richards & Elms*:

$$d = \frac{0.087 \times V^2}{Acc \times \left(\frac{A_{\lim}}{Acc}\right)^{-4}}$$

in cui si ha:

d = spostamento sismico residuo

 $V = 0.16 \times Acc \times g \times S \times Tc$

Acc = accelerazione sismica adimensionale SLD

g = 9.80665 = accelerazione di gravità

S = coefficiente di amplificazione stratigrafico

Tc =coefficiente di amplificazione topografico

Alim = accelerazione oltre la quale si innesca lo scorrimento della fondazione per superamento del limite dell'attrito

Una volta ricavato, per ciascuna combinazione di carico, tale spostamento orizzontale, si calcola il volume del terreno interessato a tale spostamento, pari allo spostamento stesso per l'altezza complessiva del muro, comprensiva dello spessore della fondazione. Il cedimento verticale del terreno a ridosso del muro viene quindi calcolato con la seguente formula (*Bowles* - metodo di *Caspe*):

$$Sv = 4 Vol / D$$

essendo Vol il volume di terreno interessato dallo spostamento del muro e D la distanza in orizzontale dal muro alla quale si annullano i cedimenti. Quest'ultima è assimilata alla dimensione orizzontale massima del cuneo di rottura del terreno spingente. Infine i cedimenti lungo il ratto interessato sono calcolati con legge decrescente col quadrato della distanza X dal paramento:

$$Sx = Sv * (X/D)^2$$

■ SPINTE DEL TERRAPIENO

Cmb n. : Numero della combinazione di carico

Fx tot : Componente orizzontale della spinta complessiva del terrapieno Fy tot : Componente verticale della spinta complessiva del terrapieno

H tot : Altezza del punto di applicazione della risultante della spinta del terrapieno
X tot : Ascissa del punto di applicazione della risultante della spinta del terrapieno
Fx tp : Componente orizzontale della spinta dovuta al peso proprio del terreno

portato dalla mensola di fondazione

Fy tp : Componente verticale della spinta dovuta al peso proprio del terreno

portato dalla mensola di fondazione

H tp : Altezza del punto di applicazione della risultante della spinta dovuta al peso

proprio del terreno portato dalla mensola di fondazione

X tp : Ascissa del punto di applicazione della risultante della spinta dovuta al

peso proprio del terreno portato dalla mensola di fondazione

Fx esp : Componente orizzontale della spinta aggiuntiva esplicita Fy esp : Componente verticale della spinta aggiuntiva esplicita

H esp : Altezza del punto di applicazione della risultante della spinta aggiuntiva

esplicita

X esp : Ascissa del punto di applicazione della risultante della spinta aggiuntiva

esplicita

Fx w : Componente orizzontale della spinta dell'acqua

Fy w : Componente verticale della spinta dell'acqua

H w : Altezza del punto di applicazione della risultante della spinta dell'acqua
X w : Ascissa del punto di applicazione della risultante della spinta dell'acqua

K sta : Costante di spinta staticaK sis : Costante di spinta sismica

C sif : Coefficiente di sicurezza al sifonamento (dato assente se non è stata

eseguita la verifica)

N.B.: Ascisse e altezze si intendono misurate a partire dal punto più a valle della fondazione del muro, quello attorno a cui avviene l'ipotetica rotazione del ribaltamento.

Tutte le spinte orizzontali si intendono positive se rivolte verso il paramento, quelle verticali se rivolte verso il basso.

CEDIMENTI VERTICALI TERRENO DI MONTE

Tipo Comb : Tipo di combinazione di carico

Comb n. : Numero della combinazione associata al tipo di combinazione

Sp.muro : Spostamento rigido residuo del muro per traslazione

Volume : Volume del terreno deformato dallo spostamento rigido

Dist.max : Distanza massima orizzontale dal muro alla quale si annullano i

cedimenti

Ced.0/4 : Cedimento verticale a ridosso del muro

Ced.1/4 : Cedimento verticale ad 1/4 della distanza massima

Ced.2/4 : Cedimento verticale a 2/4 della distanza massima

Ced.3/4 : Cedimento verticale a 3/4 della distanza massima

CALCOLO DEI CEDIMENTI DEL TERRAPIENO A MONTE

Per il calcolo dei cedimenti permanenti causati dall'azione sismica, il programma opera come segue. Innanzitutto vengono calcolate le spinte per una ulteriore modalità di azione sismica, cioè quella relativa allo stato limite di danno (SLD). A seguito del calcolo di tali spinte, per le sole combinazioni sismiche, si calcola lo spostamento residuo del muro per traslazione rigida, ricavato in base alla seguente formulazione di *Richards & Elms*:

$$d = \frac{0.087 \times V^2}{Acc \times \left(\frac{A_{\lim}}{Acc}\right)^{-4}}$$

in cui si ha:

П

П

d = spostamento sismico residuo

 $V = 0.16 \times Acc \times g \times S \times Tc$

Acc = accelerazione sismica adimensionale SLD

g = 9.80665 = accelerazione di gravità

S = coefficiente di amplificazione stratigrafico

Tc = coefficiente di amplificazione topografico

Alim = accelerazione oltre la quale si innesca lo scorrimento della fondazione per superamento del limite dell'attrito

Una volta ricavato, per ciascuna combinazione di carico, tale spostamento orizzontale, si calcola il volume del terreno interessato a tale spostamento, pari allo spostamento stesso per l'altezza complessiva del muro, comprensiva dello spessore della fondazione. Il cedimento verticale del terreno a ridosso del muro viene quindi calcolato con la seguente formula (*Bowles* - metodo di *Caspe*):

$$Sv = 4 Vol/D$$

essendo Vol il volume di terreno interessato dallo spostamento del muro e D la distanza in orizzontale dal muro alla quale si annullano i cedimenti. Quest'ultima è assimilata alla dimensione orizzontale massima del cuneo di rottura del terreno spingente. Infine i cedimenti lungo il ratto interessato sono calcolati con legge decrescente col quadrato della distanza X dal paramento:

$$Sx = Sv * (X/D)^2$$

• LEGENDA DELLE ABBREVIAZIONI

CARATTERISTICHE DELLA SOLLECITAZIONE NEL MURO

Distanza : Distanza della sezione dalla sezione iniziale del tipo di

elemento (estremo libero)

Angolo : Angolo di inclinazione della sezione rispetto al piano

orizzontale

N : Sforzo normale, positivo se di compressione

M : Momento flettente, positivo se antiorario (ribaltante)

T : Sforzo di taglio, positivo se diretto verso sinistra (lembo più a valle)

N.B.: Le caratteristiche N, M e T si intendono riferite ad 1 metro di sezione di muro, o a tutta la sezione nel caso di contrafforti o cordoli.

□ VERIFICHE PER IL MURO IN C.A.

Sez. N. : Numero della sezione da verificare

Ele : Tipo di elemento verificato:

1 = PARAMENTO

2 = MENSOLA AEREA A VALLE

3 = MENSOLA AEREA A MONTE

4 = MENSOLA DI FONDAZIONE A VALLE

5 = MENSOLA DI FONDAZIONE A MONTE

6 = DENTE DI FONDAZIONE

7 = SEZIONE TRASVERSALE PARAMENTO

8 = SEZIONE TRASVERSALE FONDAZIONE

9 = CONTRAFFORTE

10= CORDOLO

Dist : Distanza della sezione dalla sezione iniziale del tipo di elemento (mezzeria della campata per

sezioni verticali del paramento e cordoli)

H : Altezza della sezione

B : Larghezza della sezione (nel caso di contrafforti con sezione a T, tale dato è relativo alla larghezza

dell'anima della sezione, al netto quindi dei tratti di paramento collaborante)

Xg : Ascissa del baricentro della sezione

Yg : Altezza del baricentro della sezione. Ascissa e altezza si intendono misurate a partire dal punto più a

SOFTWARE: C.D.W. - Computer Design of Walls - Rel. 2019 - Lic. Nro: 30897

valle della fondazione del muro, quello attorno a cui avviene l'ipotetica rotazione del ribaltamento

Ang : Angolo di inclinazione della sezione rispetto al piano orizzontale

Cmb fle : Combinazione di carico più gravosa a presso-flessione. Un valore maggiore di 100 indica una

combinazione del tipo A2

Nsdu : Sforzo normale di calcolo relativo alla combinazione più gravosa a presso-flessione, agente su 1

metro di muro o su tutta la sezione se si tratta di contrafforti o cordoli. Positivo se di compressione

Msdu : Momento flettente di calcolo relativo alla combinazione più gravosa a presso-flessione, agente su l

metro di muro o su tutta la sezione se si tratta di contrafforti o cordoli. Positivo se antiorario

(ribaltante)

A sin : Area di armatura nel lembo di sinistra (quello più a valle) della sezione, relativa a 1 metro di muro o a tutta la sezione se si tratta di contrafforti o cordoli (nel caso di contrafforti con sezione a T, tale

a tutta la sezione se si tratta di contrafforti o cordoli (nel caso di contrafforti con sezione a 1, tale area va distribuita su tutta la larghezza delle ali e non è cumulabile all'area dei corrispondenti ferri

verticali per la sezione orizzontale del paramento in quanto in essa già compresa)

A des : Area di armatura nel lembo di destra (quello più a monte) della sezione, relativa a 1 metro di muro o

a tutta la sezione se si tratta di contrafforti o cordoli

An. s : Angolo della armatura di sinistra rispetto alla normale della sezione. L'angolo si intende positivo se

l'armatura va a divergere all'aumentare della distanza

An. d : Angolo della armatura di destra rispetto alla normale della sezione. L'angolo si intende positivo se

l'armatura va a divergere all'aumentare della distanza

Nrdu : Sforzo normale associato al momento resistente ultimo sulla sezione, agente su 1 metro di muro o su

tutta la sezione se si tratta di contrafforti o cordoli. Positivo se di compressione

Mrdu : Momento flettente resistente ultimo sulla sezione, agente su 1 metro di muro o su tutta la sezione se si

tratta di contrafforti o cordoli

Cmb tag : Combinazione di carico più gravosa a taglio. Un valore maggiore di 100 indica una combinazione

del tipo A2

Vsdu : Sforzo di taglio di calcolo relativo alla combinazione più gravosa a taglio, agente su 1 metro di muro

o su tutta la sezione se si tratta di contrafforti o cordoli. Positivo se diretto verso sinistra (lembo più a

valle)

Vrdu c : Taglio resistente ultimo di calcolo per il meccanismo resistente affidato al calcestruzzo

Vrdu s : Taglio resistente ultimo di calcolo per il meccanismo resistente affidato alle staffe

A sta : Area di staffe necessaria nel concio precedente la sezione

Verif. : Indicazione soddisfacimento delle verifiche di resistenza

• VERIFICHE FESSURAZIONE MURI

Muro N. : Numero del muro

Ele : Tipo di elemento verificato

Tipo Comb : Tipo di combinazione di carico

Cmb fes : Combinazione di carico più gravosa a fessurazione, tra quelle del tipo

considerato

Sez. fes : Sezione dell'elemento in cui risulta più gravosa la verifica a

fessurazione

N fes : Sforzo normale di calcolo in corrispondenza della sezione considerata

M fes : Momento flettente di calcolo in corrispondenza della sezione

considerata

Dist. : Distanza media tra le fessure in condizioni di esercizio

W ese : Ampiezza media delle fessure in condizioni di esercizio

W max : Ampiezza massima limite tra le fessure

Verifica : Indicazione soddisfacimento delle verifiche

VERIFICHE TENSIONI DI ESERCIZIO MURI

Muro N. : Numero del muro

Ele : Tipo di elemento verificato

Tipo Comb : Tipo di combinazione di carico

Cmb åc : Combinazione di carico più gravosa per le tensioni nel calcestruzzo, tra

quelle del tipo considerato

Sez. σ_c : Sezione del palo nella quale la verifica della tensione nel calcestruzzo è

più gravosa

N σ_c : Sforzo normale di calcolo in corrispondenza della sezione considerata

M σ_c : Momento flettente di calcolo in corrispondenza della sezione

considerata

 σ_c : Tensione massima nel calcestruzzo in condizioni di esercizio

 σ_c max : Tensione massima limite nel calcestruzzo

Cmb of : Combinazione di carico più gravosa per le tensioni nell'acciaio, tra

quelle del tipo considerato

Sez. σ_f : Sezione del palo nella quale la verifica della tensione nell'acciaio è più

gravosa

 $N \sigma_f$: Sforzo normale di calcolo in corrispondenza della sezione considerata

 $M \sigma_f$: Momento flettente di calcolo in corrispondenza della sezione

considerata

σ_f : Tensione massima nell'acciaio in condizioni di esercizio

σ_f max : Tensione massima limite nell'acciaio

Verifica : Indicazione soddisfacimento delle verifiche

CEDIMENTI VERTICALI TERRENO DI MONTE

Tipo Comb : Tipo di combinazione di carico

Comb n. : Numero della combinazione associata al tipo di combinazione

Sp.muro : Spostamento rigido residuo del muro per traslazione

Volume : Volume del terreno deformato dallo spostamento rigido

Dist.max : Distanza massima orizzontale dal muro alla quale si annullano i

cedimenti

Ced.0/4 : Cedimento verticale a ridosso del muro

Ced.1/4 : Cedimento verticale ad 1/4 della distanza massima

Ced.2/4 : Cedimento verticale a 2/4 della distanza massima

Ced.3/4 : Cedimento verticale a 3/4 della distanza massima

DATI DI CALCOLO							
	PARAMETR	I SISMICI					
Vita Nominale (Anni)	50	Classe d' Uso	SECONDA	4			
Longitudine Est (Grd)	14,69473	Latitudine Nord (Gro	I) 37,38427	7			
Categoria Suolo	В	Coeff. Condiz. Topogr.	1,00000)			
Probabilita' Pvr (SLV)	0,10000	Periodo Ritorno Anni (SI	-V) 475,00000)			
Accelerazione Ag/g (SLV)	0,17600	Fattore Stratigrafia 'S'	1,20000)			
Probabilita' Pvr (SLD)	0,63000	Periodo Ritorno Anni (SI	_D) 50,00000)			
Accelerazione Ag/g (SLD)	0,05200	·	,				
	TEORIE D	CALCOLO	•				
Verifiche effettuate con il metodo degli stati limite ultimi							
Portanza dei pali calcolata con la teoria di Norme A.G.I.							
Portanza terreno	Portanza terreno di fondazione calcolata con la teoria di Brinch-Hansen						
CRITERI DI CALCOLO							
		dovuta ai sovraccarichi sul					
		dovuta alle forze applicate					
		zzante delle forze applicate					
Rapporto tra il taglio medio e quell			1,00	:			
Coeff. maggiorativo diametro perfo			1,20				
Percentuale spinta a valle per la ve		0	50				
Percentuale spinta a valle per la ve			0				
Percentuale spinta a valle per la v		e	100				
Percentuale spinta a valle per calc		71411 050750	100				
COEFFIC	IENII PAR	ZIALI GEOTECI					
		TABELLA M1					
Tangente Resist. Taglio		1,00	1,25				
Peso Specifico		1,00	1,00				
Coesione Efficace (c'k)		1,00	1,25				
Resist. a taglio NON drenata (cuk)		1,00	1,40				
Tipo Approccio		Combinazione Unica: (A1+M1+R3)					
Tipo di fondazione	DO CTATICI		Superficiale				
COEFFICIENTI R3	R3 STATICI	R3 SISMICI	R3 PALI				
Capacita' Portante	1,4						
Scorrimento	1,10						
Ribaltamento Resist. Terreno Valle	1,1						
	1,4	0 1,20	4.05				
Resist Lat a Compr			1,35				
Resist. Lat. a Compr.			1,35				
Resist. Lat. a Traz.			1,25				
Carichi Trasversali			1,30				

CARATTERISTICHE MATERIALI									
CAR	CARATTERISTICHE DEI MATERIALI								
CARA	CARATTERISTICHE C. A. ELEVAZIONE								
Classe Calcestruzzo	C28/3	35	Classe Acciaio	B450C					
Modulo Elastico CLS	323082	kg/cmq	Modulo Elastico Acc	2100000 kg/cmq					
Coeff. di Poisson	0,2		Tipo Armatura	POCO SENSIBILI					
Resist.Car. CLS 'fck'	280,0	kg/cmq	Tipo Ambiente	ORDINAR. XC2/XC3					
Resist. Calcolo 'fcd'	158,0	kg/cmq	Resist.Car.Acc 'fyk'	4500,0 kg/cmq					
Tens. Max. CLS 'rcd'	158,0	kg/cmq	Tens. Rott.Acc 'ftk'	4500,0 kg/cmq					
Def.Lim.El. CLS 'eco'	0,20	%	Resist. Calcolo'fyd'	3913,0 kg/cmq					
Def.Lim.Ult CLS 'ecu'	0,35	%	Def.Lim.Ult.Acc'eyu'	1,00 %					
Fessura Max.Comb.Rare		mm	Sigma CLS Comb.Rare	168,0 kg/cmq					
Fessura Max.Comb.Perm	0,3	mm	Sigma CLS Comb.Perm	126,0 kg/cmq					

CARATTERISTICHE MATERIALI								
CAR	ATTERI	STICHE	DEI MATERIAL	.1				
Fessura Max.Comb.Freq	0,4	mm	Sigma Acc Comb.Rare	3600,0	kg/cmq			
Peso Spec.CLS Armato	2500	kg/mc	Copriferro Netto	2,5	cm			
CARATTERISTICHE C. A. FONDAZIONE								
Classe Calcestruzzo	C28/3	35	Classe Acciaio	B ²	150C			
Modulo Elastico CLS	323082	kg/cmq	Modulo Elastico Acc	210000	0 kg/cmq			
Coeff. di Poisson	0,2		Tipo Armatura	POCO SENSIBILI				
Resist.Car. CLS 'fck'	280,0	kg/cmq	Tipo Ambiente ORDINAR. XC		R. XC2/XC3			
Resist. Calcolo 'fcd'	158,0	kg/cmq	Resist.Car.Acc 'fyk'	4500,0	kg/cmq			
Tens. Max. CLS 'rcd'	158,0	kg/cmq	Tens. Rott.Acc 'ftk'	4500,0	kg/cmq			
Def.Lim.El. CLS 'eco'	0,20	%	Resist. Calcolo'fyd'	3913,0	kg/cmq			
Def.Lim.Ult CLS 'ecu'	0,35	%	Def.Lim.Ult.Acc'eyu'	1,00	%			
Fessura Max.Comb.Rare		mm	Sigma CLS Comb.Rare	168,0	kg/cmq			
Fessura Max.Comb.Perm	0,3	mm	Sigma CLS Comb.Perm	126,0	kg/cmq			
Fessura Max.Comb.Freq	0,4	mm	Sigma Acc Comb.Rare	3600,0	kg/cmq			
Peso Spec.CLS Armato	2500	kg/mc	Peso Spec.CLS Magro	2200	kg/mc			
Copriferro Netto	2,5	cm						

DATI TERRAPIENO MURO 1

Muro n.1

DATI TERRAPIENO

Altezza del terrapieno a monte nel punto di contatto col muro:3.1 m

Altezza del terrapieno a valle nel punto di contatto col muro:1 m

Inclinaz. media terreno valle(positivo se scende verso valle):0 °

Angolo di attrito tra fondazione e terreno:11.33 °

Adesione tra fondazione e terreno:0 Kg/cmq

Angolo di attrito tra fondazione e terreno in presenza acqua:11.33 °

Adesione tra fondazione e terreno in presenza di acqua:0 Kg/cmq

Permeabilita' Terreno:ALTA
Muro Vincolato:NO
Coefficiente BetaM:.379
Coefficiente di intensita' sismica orizzontale:.08
Coefficiente di intensita' sismica verticale:.04

Coordinate dei vertici aggiuntivi per la determinazione della spezzata dell'estradosso del terrapieno a monte e a valle. Le coordinate sono fornite per il terrapieno a monte rispetto al punto iniziale (ovvero piu' a sinistra), mentre per il terrapieno a valle sono riferite al punto piu' in basso a sinistra della fondazione.

POLIGONALE MONTE			POL	IGONALE VA	LLE	
Vertice	Ascissa m	Ordinata m	Vertice	Ascissa m	Ordinata m	
1 2	0,10 13,14	0,00 -0,01				

DATI STRATIGR. MURO 1

STRATIGRAFIA DEL TERRENO		
STRATO n. 1 :	-	
Spessore dello strato:	4,00	m
Angolo di attrito interno del terreno:	17	0
Angolo di attrito tra terreno e muro:	11	0
Coesione del terreno in condizioni drenate:	0,10	Kg/cmq
Adesione tra il terreno e il muro in condizioni drenate:	0,00	Kg/cmq
Peso specifico apparente del terreno in assenza di acqua:	1850	Kg/mc
Coesione del terreno in condizioni non drenate:	0,40	Kg/cmq
Adesione tra il terreno e il muro in condizioni non drenate:	0,00	Kg/cmq
Peso specifico efficace del terreno sommerso:	850	Kg/mc
Coefficiente di Lambe per attrito negativo pali:		0,00
OTDATO " O		
STRATO n. 2 :	2.00	
Spessore dello strato:	3,00 15	m 。
Angolo di attrito interno del terreno:	10	0
Angolo di attrito tra terreno e muro: Coesione del terreno in condizioni drenate:	0,40	Kalema
Adesione tra il terreno e il muro in condizioni drenate:	0,40	Kg/cmq Kg/cmq
Peso specifico apparente del terreno in assenza di acqua:	1850	Kg/cmq Kg/mc
Coesione del terreno in condizioni non drenate:	0,40	Kg/mc Kg/cmq
Adesione tra il terreno e il muro in condizioni non drenate:	0,40	Kg/cmq Kg/cmq
Peso specifico efficace del terreno sommerso:	850	Kg/cmq Kg/mc
Coefficiente di Lambe per attrito negativo pali:	1	0,00
		-,-•

GEOMETRIA MURO 1							
MURO A MENSOLA IN CEMENTO ARMATO							
Altezza del paramento:	3,40	m					
Spessore del muro in testa (sezione orizzontale):	40	cm					
Scostamento della testa del muro (positivo verso monte):	0	cm					
Spessore del muro alla base (sezione orizzontale):	50	cm					

GEOMETRIA MURO 1						
FONDAZIONE DIRETTA						
Lunghezza della mensola di fondazione a valle:	50	cm				
Lunghezza della mensola di fondazione a monte:	130	cm				
Spessore minimo della mensola a valle:	40	cm				
Spessore massimo della mensola a valle:	40	cm				
Spessore minimo della mensola a monte:	40	cm				
Spessore massimo della mensola a monte:	40	cm				
Inclinazione del piano di posa della fondazione:	0	0				
Sviluppo della fondazione:	1,0	m				
Spessore del magrone:	0	cm				
Altezza del dente di fondazione:	20	cm				
Spessore minimo del dente di fondazione:	40	cm				
Spessore massimo del dente di fondazione:	40	cm				
Il dente di fondazione e' posizionato all'estremita' di monte						

CARICH	II MURO) 1	
SOVRACCARICHI	SUL	TERRAPIENO	

CARICHI MURO 1		
SOVRACCARICHI SUL TERRAPIENO		
CONDIZIONE n.	1	
Sovraccarico uniformemente distribuito generalizzato:	0,50	t/mq
Sovraccarico uniformemente distribuito a nastro:	0,00	t/mq
Distanza dal muro del punto di inizio del carico a nastro:	0,00	m
Distanza dal muro del punto di fine del carico a nastro:	0,00	m
Sovraccarico concentrato lineare lungo lo sviluppo:	0,00	t/m
Distanza dal muro del punto di applicazione carico lineare:	0,00	m
Carico concentrato puntiforme:	0,00	t
Interasse tra i carichi puntiformi lungo lo sviluppo:	1,00	m
Distanza dal muro punto di applicazione carico puntiforme:	0,00	m
Sovraccarico uniformemente distribuito terrapieno a valle:	0,00	t/mq

COMBINAZIONI MURO 1

Cond.	Descrizione
Num.	Condizione
1	PERMANENTE

	COMBINAZIONI MURO 1											
			COM	BINAZ	IONI [OI CAF	RICO S.	L.U. A 1				
Comb	Cond.1	Cond.2	Cond.3	Cond.4	Cond.5	Cond.6	Cond.7	Cond.8	Cond.9	Cond10	Sisma	
1	1,50										0,00	
2	1,00										1,00	

				C	OMBINAZ	ONI MUR	01						
COMBINAZIONI DI CARICO S.L.E. RARA													
Comb	Cond.1	Cond.2	Cond.3	Cond.4	Cond.5	Cond.6	Cond.7	Cond.8	Cond.9	Cond10	Sisma		
1	1,00												

				C	OMBINAZ	ONI MUR	0 1							
	COMBINAZIONI DI CARICO S.L.E. FREQ.													
Comb	Cond.1	Cond.2	Cond.3	Cond.4	Cond.5	Cond.6	Cond.7	Cond.8	Cond.9	Cond10	Sisma			
1	1,00													

				C	OMBINAZ	ONI MUR	0 1					
COMBINAZIONI DI CARICO S.L.E. PERM.												
Comb	Cond.1	Cond.2	Cond.3	Cond.4	Cond.5	Cond.6	Cond.7	Cond.8	Cond.9	Cond10	Sisma	
1	1,00											

							SPINTE /	A MONT	E MURO	1 - Tabella	a Combi	nazioni:	A1						
	SPINTE DEL TERRAPIENO A MONTE																		
Cmb	Cmb Fxtot Fytot Htot Xtot Fxtp Fytp Htp Xtp Fxesp Fyesp Hesp Xesp Fxw Fyw Hw Xw Ksta Ksis Csif														C sif				
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
1	9875	6173	1,15	1,91	0	5393	0,00	1,43	0	0	0,00	0,00	0	0	0,00	0,00	0,602	0,602	0,00
2	. 8861 6021 1.13 1.86 288 3732 1.39 1.43 0 0 0.00 0.00 0 0 0.00 0.00 0.735 0.00																		

						SPINT	ΓΕ Α VA	LLE MU	RO 1 - Ta	bella Cor	nbinazio	ni: A1						
	SPINTE DEL TERRAPIENO A VALLE																	
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	ΝH	Χw	K sta	K sis
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m		
1	1577	246	0,33	0,10	0	400	0,00	0,32	0	0	0,00	0,00	0	0	0,00	0,00	1,726	1,73
2	1417	238	0,33	0,11	-31	372	0,66	0,32	0	0	0,00	0,00	0	0	0,00	0,00	1,737	1,55

	SPINTE A MONTE MURO 1 - Tabella Combinazioni: Rare																		
	SPINTE DEL TERRAPIENO A MONTE																		
Cmb	Cmb Fxtot Fytot Htot Xtot Fxtp Fytp Htp Xtp Fxesp Fyesp Hesp Xesp Fxw Fyw Hw Xw Ksta Ksis Cs													C sif					
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
1	7449	4647	1,14	1,91	0	4139	0,00	1,43	0	0	0,00	0,00	0	0	0,00	0,00	0,602	0,602	0,00

SPINTE A VALLE MURO 1 - Tabella Combinazioni: Ra	re
SPINTE DEL TERRAPIENO A VALL	.E
Cmb Fx tot Fy tot H tot X tot Fx tp Fy tp H tp X tp Fx esp Fy esp H esp X es	p Fxw Fyw Hw Xw Ksta Ksis

n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m		
1	1577	246	0,33	0,10	0	400	0,00	0,32	0	0	0,00	0,00	0	0	0,00	0,00	1,726	1,73

	SPINTE A MONTE MURO 1 - Tabella Combinazioni: Freq.																		
	SPINTE DEL TERRAPIENO A MONTE																		
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis	C sif
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
1	7449	4647	1,14	1,91	0	4139	0,00	1,43	0	0	0,00	0,00	0	0	0,00	0,00	0,602	0,602	0,00

	SPINTE A VALLE MURO 1 - Tabella Combinazioni: Freq.																	
	SPINTE DEL TERRAPIENO A VALLE																	
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m		
1	1577	246	0,33	0,10	0	400	0,00	0,32	0	0	0,00	0,00	0	0	0,00	0,00	1,726	1,73

	SPINTE A MONTE MURO 1 - Tabella Combinazioni: Perm.																		
	SPINTE DEL TERRAPIENO A MONTE																		
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis	C sif
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
1	7449	4647	1,14	1,91	0	4139	0,00	1,43	0	0	0,00	0,00	0	0	0,00	0,00	0,602	0,602	0,00

	SPINTE A VALLE MURO 1 - Tabella Combinazioni: Perm.																	
	SPINTE DEL TERRAPIENO A VALLE																	
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m		
1	1577	246	0,33	0,10	0	400	0,00	0,32	0	0	0,00	0,00	0	0	0,00	0,00	1,726	1,73

	SPINTE A MONTE MURO 1 - Tabella Combinazioni: SLD																		
	SPINTE DEL TERRAPIENO A MONTE																		
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis	C sif
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
2	7933	5100	1,14	1,89	116	4005	1,50	1,43	0	0	0,00	0,00	0	0	0,00	0,00	0,600	0,646	0,00

VERIFICHE STABILITA' MURO 1		
VERIFICA AL RIBALTAMENTO		
Combinazione di carico piu' svantaggiosa:	1	A1
Momento forze ribaltanti complessivo:	11316	Kgm/m
Momento stabilizzante forze peso e carichi:	22202	Kgm/m
Momento stabilizzante massimo dovuto ai tiranti:	0	Kgm/m
Coefficiente sicurezza minimo al ribaltamento:	1,96	
LA VERIFICA RISULTA SODDISFATTA		

VERIFICHE STABILITA' MURO 1		
VERIFICA ALLO SCORRIMENTO		
Combinazione di carico piu' svantaggiosa:	1	A1
Risultante forze che attivano lo scorrimento:	9849	Kg/m
Risultante forze che si oppongono allo scorrimento:	15349	Kg/m
Forza dei tiranti che si oppone allo scorrimento:	0	Kg/m
Coefficiente sicurezza minimo allo scorrimento:	1,56	
LA VERIFICA RISULTA SODDISFATTA		

SOLLECITAZIONI MURO 1 - Tabella Combinazioni: A1

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	N	М	Т
N.r	Elemento	N.ro	cm	o	Kg	Kgm	Kg
1	DENTE FONDAZ.	1	0	180,0	685	-26	0
		2	20	180,0	303	676	7389
1	MENS.FOND.MONTE	1	0	90,0	1678	-6	-336
		2	30	90,0	-5711	1644	-2887
		3	60	90,0	-5711	435	-4886
		4	90	90,0	-5711	-1193	-5835
		5	120	90,0	-5711	-2984	-5966
		6	130	90,0	-5711	-3575	-5837
1	MENS.FOND.VALLE	1	0	-90,0	0	0	0
		2	30	-90,0	0	-656	-4264
		3	50	-90,0	0	-1762	-6749

SOLLECITAZIONI MURO 1 - Tabella Combinazioni: A1

	9	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	N	М	Т
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
1	PARAMENTO	1	0	0,0	0	0	0
		2	30	0,0	303	-1	0
		3	60	0,0	613	21	175
		4	90	0,0	930	110	464
		5	120	0,0	1253	302	866
		6	150	0,0	1583	630	1382
		7	180	0,0	1919	1128	2011
		8	210	0,0	2262	1831	2755
		9	240	0,0	2612	2772	3611
		10	270	0,0	2968	3986	4582
		11	300	0,0	3331	5507	5666
		12	330	0,0	3700	7368	6864
		13	340	0,0	3825	8070	7289

SOLLECITAZIONI MURO 1 - Tabella Combinazioni: A1

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	Ν	М	Т
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
2	DENTE FONDAZ.	1	0	180,0	174	-11	0
		2	20	180,0	-183	699	7432
2	MENS.FOND.MONTE	1	0	90,0	1516	-6	-304
		2	30	90,0	-5892	1686	-3034
		3	60	90,0	-5868	430	-5178
		4	90	90,0	-5843	-1337	-6469
		5	120	90,0	-5819	-3370	-6952
		6	130	90,0	-5811	-4065	-6933
2	MENS.FOND.VALLE	1	0	-90,0	0	0	0
		2	30	-90,0	-24	-658	-4266
		3	50	-90,0	-40	-1761	-6701
2	PARAMENTO	1	0	0,0	0	0	0
		2	30	0,0	291	3	24
		3	60	0,0	597	29	192
		4	90	0,0	901	123	474
		5	120	0,0	1211	316	866
		6	150	0,0	1527	643	1369
		7	180	0,0	1850	1135	1982
		8	210	0,0	2179	1827	2706
		9	240	0,0	2515	2751	3540
		10	270	0,0	2857	3940	4484
		11	300	0,0	3205	5427	5539
		12	330	0,0	3560	7246	6704
		13	340	0,0	3680	7931	7117

SOLLECITAZIONI MURO 1 - Tabella Combinazioni: Rare

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	N	М	Т
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
1	DENTE FONDAZ.	1	0	180,0	625	-30	0
		2	20	180,0	287	460	5180
1	MENS.FOND.MONTE	1	0	90,0	1276	-5	-256
		2	30	90,0	-3904	1099	-2259

SOLLECITAZIONI MURO 1 - Tabella Combinazioni: Rare

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	N	M	Т
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
		3	60	90,0	-3904	143	-3870
		4	90	90,0	-3904	-1157	-4709
		5	120	90,0	-3904	-2630	-5015
		6	130	90,0	-3904	-3131	-4998
1	MENS.FOND.VALLE	1	0	-90,0	0	0	0
		2	30	-90,0	0	-526	-3425
		3	50	-90,0	0	-1415	-5430
1	PARAMENTO	1	0	0,0	0	0	0
		2	30	0,0	303	-1	0
		3	60	0,0	613	13	122
		4	90	0,0	930	76	332
		5	120	0,0	1253	213	630
		6	150	0,0	1583	452	1014
		7	180	0,0	1919	817	1487
		8	210	0,0	2262	1335	2046
		9	240	0,0	2612	2033	2693
		10	270	0,0	2968	2937	3428
		11	300	0,0	3331	4073	4250
		12	330	0,0	3700	5466	5159
		13	340	0,0	3825	5993	5482

SOLLECITAZIONI MURO 1 - Tabella Combinazioni: Freq.

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	N	M	Т
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
1	DENTE FONDAZ.	1	0	180,0	625	-30	0
		2	20	180,0	287	460	5180
1	MENS.FOND.MONTE	1	0	90,0	1276	-5	-256
		2	30	90,0	-3904	1099	-2259
		3	60	90,0	-3904	143	-3870
		4	90	90,0	-3904	-1157	-4709
		5	120	90,0	-3904	-2630	-5015
		6	130	90,0	-3904	-3131	-4998
1	MENS.FOND.VALLE	1	0	-90,0	0	0	0
		2	30	-90,0	0	-526	-3425
		3	50	-90,0	0	-1415	-5430
1	PARAMENTO	1	0	0,0	0	0	0
		2	30	0,0	303	-1	0
		3	60	0,0	613	13	122
		4	90	0,0	930	76	332
		5	120	0,0	1253	213	630
		6	150	0,0	1583	452	1014
		7	180	0,0	1919	817	1487
		8	210	0,0	2262	1335	2046
		9	240	0,0	2612	2033	2693
		10	270	0,0	2968	2937	3428
		11	300	0,0	3331	4073	4250
		12	330	0,0	3700	5466	5159
		13	340	0,0	3825	5993	5482

SOLLECITAZIONI MURO 1 - Tabella Combinazioni: Perm.

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	N	М	Т
N.r	Elemento	N.ro	cm	ō	Kg	Kgm	Kg
1	DENTE FONDAZ.	1	0	180,0	625	-30	0
		2	20	180,0	287	460	5180
1	MENS.FOND.MONTE	1	0	90,0	1276	-5	-256
		2	30	90,0	-3904	1099	-2259
		3	60	90,0	-3904	143	-3870
		4	90	90,0	-3904	-1157	-4709
		5	120	90,0	-3904	-2630	-5015
		6	130	90,0	-3904	-3131	-4998
1	MENS.FOND.VALLE	1	0	-90,0	0	0	0
		2	30	-90,0	0	-526	-3425
		3	50	-90,0	0	-1415	-5430
1	PARAMENTO	1	0	0,0	0	0	0
		2	30	0,0	303	-1	0
		3	60	0,0	613	13	122
		4	90	0,0	930	76	332
		5	120	0,0	1253	213	630
		6	150	0,0	1583	452	1014
		7	180	0,0	1919	817	1487
		8	210	0,0	2262	1335	2046
		9	240	0,0	2612	2033	2693
		10	270	0,0	2968	2937	3428
		11	300	0,0	3331	4073	4250
		12	330	0,0	3700	5466	5159
		13	340	0,0	3825	5993	5482

											VER	IFICHE	MURC	1								
									V	ERIFIC	HE D	I RE	SIST	ΓΕΝ	ZA M	URO						
Sez	El	Dist	Н	В	Xg	Yg	Ang	Cmb	Nsdu	Msdu	A sin	A des	An.	An.	Nrdu	Mrdu	Cmb	Vsdu	Vrdu c	Vrdu s	A sta	Verif.
N.	em	cm	cm	cm	cm	cm	۰	Fle	Kg	Kgm	cmq	cmq	s °	d°	Kg	Kgm	tag	Kg	Kg	Kg	cmq/m	
1	1	0	40	100	80	380	0	1	0	0	0,0	0,0	2	0	0	0	1	0	0	0		OK
2	1	30	41	100	80	350	0	2	291	3	7,7	7,7	2	0	291	10902	2	24	15860	0		OK
3	1	60	42	100	79	320	0	2	597	29	7,7	7,7	2	0	597	11220	2	192	16113	0		OK
4	1	90	43	100	79	290	0	2	901	123	7,7	7,7	2	0	901	11539	2	474	16366	0		OK
5	1	120	44	100	78	260	0	2	1211	316	7,7	7,7	2	0	1211	11863	2	866	16617	0		OK
6	1	150	44	100	78	230	0	2	1527	643	7,7	7,7	2	0	1527	12190	1	1382	16867	0		OK
7	1	180	45	100	77	200	0	2	1850	1135	7,7	7,7	2	0	1850	12522	1	2011	17117	0		OK
8	1	210	46	100	77	170	0	1	2262	1831	7,7	15,4	2	0	2262	24999	1	2755	18709	0		OK
9	1	240	47	100	76	140	0	1	2612	2772	7,7	15,4	2	0	2612	25598	1	3611	18886	0		OK
10	1	270	48	100	76	110	0	1	2968	3986	7,7	15,4	2	0	2968	26202	1	4582	19062	0		OK
11	1	300	49	100	76	80	0	1	3331	5507	7,7	15,4	2	0	3331	26810	1	5666	19237	0		OK
12	1	330	50	100	75	50	0	1	3700	7368	7,7	15,4	2	0	3700	27422	1	6864	19410	0		OK
13	1	340	50	100	75	40	0	1	3825	8070	7,7	15,4	2	0	3825	27627	1	7289	19467	0		OK

											VER	RIFICHE	MURC	1								
									V	ERIFIC	HE D	I RE	SIST	ΓΕΝ	ZA M	URO						
Sez	El	Dist	Н	В	Xg	Yg	Ang	Cmb	Nsdu	Msdu	A sin	A des	An.	An.	Nrdu	Mrdu	Cmb	Vsdu	Vrdu c	Vrdu s	A sta	Verif.
N.	em	cm	cm	cm	cm	cm	0	Fle	Kg	Kgm	cmq	cmq	s °	d°	Kg	Kgm	tag	Kg	Kg	Kg	cmq/m	
1	4	0	40	100	0	20	-90	1	0	0	0,0	0,0	0	0	0	0	0	0	0	0		OK
2	4	30	40	100	30	20	-90	2	-24	-658	7,7	7,7	0	0	-24	8306	2	-4266	57190	0		OK
3	4	50	40	100	50	20	-90	2	-40	-1761	7.7	7.7	0	0	-40	8301	1	-6749	57190	0		OK

											VER	IFICHE	MURC	1								
	VERIFICHE DI RESISTENZA MURO																					
Sez	EI	Dist	Н	В	Xg	Yg	Ang	Cmb	Nsdu	Msdu	A sin	A des	An.	An.	Nrdu	Mrdu	Cmb	Vsdu	Vrdu c	Vrdu s	A sta	Verif.
N.	em	cm	cm	cm	cm	cm	۰	Fle	Kg	Kgm	cmq	cmq	s °	d°	Kg	Kgm	tag	Kg	Kg	Kg	cmq/m	
1	5	0	40	100	230	20	90	1	1678	-6	0,0	0,0	0	0	0	0	1	-336	0	0		OK
2	5	30	40	100	200	20	90	2	-5892	1686	7,7	7,7	0	0	-5892	9556	2	-3034	15605	0		OK
3	5	60	40	100	170	20	90	1	-5711	435	7,7	7,7	0	0	-5711	9587	2	-5178	15605	0		OK
4	5	90	40	100	140	20	90	2	-5843	-1337	7,7	7,7	0	0	-5843	9564	2	-6469	15605	0		OK
5	5	120	40	100	110	20	90	2	-5819	-3370	7,7	7,7	0	0	-5819	9568	2	-6952	15605	0		OK
6	5	130	40	100	100	20	90	2	-5811	-4065	7,7	7,7	0	0	-5811	9570	2	-6933	15605	0		OK

											VER	IFICHE	MURC	1								
	VERIFICHE DI RESISTENZA MURO																					
Sez	EI	Dist	Η	В	Xg	Yg	Ang	Cmb	Nsdu	Msdu	A sin	A des	An.	An.	Nrdu	Mrdu	Cmb	Vsdu	Vrdu c	Vrdu s	A sta	Verif.
N.	em	cm	cm	cm	cm	cm	٥	Fle	Kg	Kgm	cmq	cmq	s °	d°	Kg	Kgm	tag	Kg	Kg	Kg	cmq/m	
1	6	0	40	100	210	-20	180	1	685	-26	0,0	0,0	0	0	0	0	0	0	0	0		OK
2	6	20	40	100	210	0	180	2	-183	699	2,5	2,5	0	0	-183	2686	2	7432	137665	0		OK

					VERIFIC	CHE MURO	1			
				FE	SSURA	ZIONE	MURI			
Muro	Ele	Tipo	Cmb	Sez.	N fes	M fes	Dist.	Wcalc	W Lim	Verifica
N.		Comb	fes	fes	Kg	Kgm	cm	mm	mm	
1	6	Freq	1	2	287	460	28	0,10	0,40	OK
		Perm	1	2	287	460	28	0,10	0,30	OK
1	5	Freq	1	6	-3904	-3131	19	0,22	0,40	OK
		Perm	1	6	-3904	-3131	19	0,22	0,30	OK
1	4	Freq	1	3	0	-1415	20	0,08	0,40	OK
		Perm	1	3	0	-1415	20	0,08	0,30	OK
1	1	Freq	1	13	3825	5993	12	0,08	0,40	OK
		Perm	1	13	3825	5993	12	0,08	0,30	OK

							VER	IFICHE M	URO '	1					
						TENSI	ONIC) I ESE	RCI	ZIO	MURI				
Muro	Ele	Tipo	Cmb	Sez.	Ν σς	Мσс	σc	σc max	Cmb	Sez.	Nσf	M σf	σf	σf max	Verifica
N.		Comb	σc	σc	Kg	Kgm	Kg/cmq	Kg/cmq	σf	σf	Kg	Kgm	Kg/cmq	Kg/cmq	
1	6	rara	1	2	287	460	6,9	168,0	1	2	287	460	455	3600	OK
		perm	1	2	287	460	6,9	126,0							OK
1	5	rara	1	6	-3904	-3131	26,7	168,0	1	6	-3904	-3131	1425	3600	OK
		perm	1	6	-3904	-3131	26,7	126,0							OK
1	4	rara	1	3	0	-1415	13,1	168,0	1	3	0	-1415	527	3600	OK
		perm	1	3	0	-1415	13,1	126,0							OK
1	1	rara	1	13	3825	5993	27,9	168,0	1	13	3825	5993	777	3600	OK
		perm	1	13	3825	5993	27,9	126,0							OK

VERIFICA P	ORTANZA I	MURO 1				
VERIFICHE POR	TANZA	FOND	AZIONE			
Numero dello strato corrispondente alla fondazion	ne:				2	
Combinazione di carico piu' gravosa:					2	A1
Scarico complessivo ortogonale al piano di posa:				1	6,43	t/m
Scarico complessivo parallelo al piano di posa:					8,27	t/m
Eccentricita' dello scarico lungo il piano di posa:				-(0,43	m
Larghezza della fondazione:]	2,30	m
Lunghezza della fondazione:				,	1,00	m
Valore efficace della larghezza:					1,44	m
Peso specifico omogeneizzato del terreno:				:	1850	Kg/mc
Pressione verticale dovuta al peso del terrapieno					1,85	t/mq
VERIFICA IN C	i .		:			
Fattori di capacita' portante: Ng =	2,3378	Nq =	3,9411	Nc =	1	,9765
Fattori di forma: Sg =	1,2439	Sq =	1,2439	Sc =		,4878
Fattori di profondita: Dg =	1,0000	Dq =	1,1896	Dc =	1	,2541
Fattori inclinazione carico: Ig =	0,1852	Iq =	0,3728	Ic =	1	,1595
Fattori inclinazione base: Bg =	1,0000	Bq =	1,0000	Bc =	1	,0000
Fattori incl. piano campagna: Gg =	1,0000	Gq =	1,0000	Gc =		,0000
Pressione media limite:				1	8,07	t/mq
Sforzo normale limite:					1,62	t/m
Coefficiente di sicurezza: (Sf.Norm.Lim/Scar.Com					1,32	
VERIFICA IN CON			ATĘ			
Fattore di capacita' portante: Nco =	5,1416	Nqo =		1,00		
Fattore di forma: Sco =	1,2872	•		1,00		
Fattore di profondita: Dco =	1,2786	Dqo =		1,00	000	

VERIFICA PORTANZA MURO 1	
VERIFICHE PORTANZA FONDAZIONE	
Fattore inclinazione carico: Ico = 0,6050 Iqo =	1,0000
Fattore inclinazione base: Bco = 1,0000 Bqo =	1,0000
Fattore incl. piano campagna: Gco = 1,0000 Gqo = Pressione media limite in condizioni non drenate: Sforzo normale limite in condizioni non drenate:	1,0000 22,33 t/mq 26,72 t/m
Coefficiente di sicurezza in condizioni non drenate:	1,63
LA VERIFICA RISULTA SODDISFATTA VERIFICHE CEDIMENTI SLD	
Combinazione di carico SLD piu' gravosa: Scarico complessivo ortogonale al piano di posa: Sforzo normale limite in condizioni drenate: Coefficiente di sicurezza in condizioni drenate: Sforzo normale limite in condizioni NON drenate: Coefficiente di sicurezza in condizioni NON drenate: LA VERIFICA RISULTA SODDISFATTA	2 15,34 t/m 18,68 t/m 1,22 30,51 t/m 1,99

	CED	IMENTI	TERR	ENO A	MON	TE - MU	RO N.1	
Tipo	Comb.	Sp.muro	Volume	DistMax	Ced.0/4	Ced.1/4	Ced.2/4	Ced.3/4
comb.	nro	mm	mc	m	mm	mm	mm	mm
SLD	2	0,1	0,000	5,80	0,4	0,2	0,1	0,0

COMPUTO MATERIALI MURO 1		
COMPUTO DEI MATERIALI		
Volume di calcestruzzo per metro di muro:	2,530	mc/m
Peso di acciaio per metro di muro:	128,7	Kg/m
Superficie casseforme per metro di muro:	8,0	mq/m
Sviluppo complessivo del muro:	1,00	m
Volume di calcestruzzo complessivo per il muro:	2,530	mc
Peso di acciaio complessivo per il muro:	128,7	Kg
Superficie casseforme complessiva per il muro:	8,0	mq
Rapporto peso acciaio / volume calcestruzzo del muro:	50,9	Kg/mc

COMPUTO MATERIALI MURO 1						
DISTINTA DELLE ARMATURE						
- Diametro φ	8	mm				
Sviluppo complessivo barre per metro di muro:	52,00	m/m				
Peso totale barre per metro di muro:	20,5	Kg/m				
- Diametro φ	14	mm				
Sviluppo complessivo barre per metro di muro:	89,46	m/m				
Peso totale barre per metro di muro:	108,2	Kg/m				

COMUNE D	<i>I RAMACCA</i>
PROVINCIA	DI CATANIA

TABULATI DI CALCOLO

OGGETTO:	COMUNE DI RAMACCA
COMMITTENTE:	COMUNE DI RAMACCA

RELAZIONE DI CALCOLO

Sono illustrati con la presente i risultati dei calcoli che riguardano il calcolo delle spinte, le verifiche di stabilità e di resistenza di muri di sostegno.

NORMATIVA DI RIFERIMENTI

I calcoli sono condotti nel pieno rispetto della normativa vigente e, in particolare, la normativa cui viene fatto riferimento nelle fasi di calcolo, verifica e progettazione è costituita dalle *Norme Tecniche per le Costruzioni*, emanate con il D.M. 17/01/2018 pubblicato nel suppl. 8 G.U. 42 del 20/02/2018, nonché la Circolare del Ministero Infrastrutture e Trasporti del 21 Gennaio 2019, n. 7 "*Istruzioni per l'applicazione dell'aggiornamento delle norme tecniche per le costruzioni*".

CALCOLO DELLE SPINTE

Si suppone valida l'ipotesi in base alla quale la spinta attiva si ingenera in seguito al movimento del manufatto nella direzione della spinta agente. Le ipotesi di base per il calcolo della spinta sono le seguenti, le medesime adottate dal metodo di calcolo secondo *Coulomb*, con l'estensione di *Muller-Breslau* e *Mononobe-Okabe*:

- In fase di spinta attiva si crea all'interno del terrapieno un cuneo di spinta, che si distacca dal terreno indisturbato tramite linee di frattura rettilinee, lungo le quali il cuneo scorre generando tensioni tangenziali dovute all'attrito.
- Sul cuneo di spinta agiscono le seguenti forze: peso proprio del terreno, sovraccarichi applicati sull'estradosso del terrapieno, spinte normali alle superfici di scorrimento del cuneo (da una parte contro il paramento e dall'altra contro la porzione di terreno indisturbato), forze di attrito che si innescano lungo le superfici del cuneo e che si oppongono allo scorrimento.
- In condizioni sismiche, al peso proprio del cuneo va aggiunta una componente orizzontale, ed eventualmente anche una verticale, pari al peso complessivo moltiplicato per il prodotto dei coefficienti sismici.
- Il fatto che il muro ha spostamenti significativi fa in modo che l'attrito che si genera è pari al valore massimo possibile, sia in condizioni di spinta attiva che di spinta passiva, quindi le risultanti delle reazioni sulle pareti del cuneo risultano inclinate di una angolo f rispetto alla normale alla superficie di scorrimento.

Il programma *C.D.W. Win*, pur adottando le stesse ipotesi, piuttosto che utilizzare la formula di *Coulomb* in forma chiusa, applica la procedura originaria derivante dall'equilibrio delle forze agenti sul cuneo di spinta, cercando il valore di massimo della spinta per tentativi successivi su tutti i possibili cunei di spinta. Così facendo si possono aggiungere alle ipotesi già indicate le seguenti generalizzazioni, che invece devono essere trascurate utilizzando i metodi classici:

- Il terreno spingente può essere costituito da diversi strati, separati da superfici di forma generica, con caratteristiche geotecniche differenti.
- Il profilo dell'estradosso del terrapieno spingente può avere una forma generica qualsiasi, purché coerente con le caratteristiche del terreno.
- I sovraccarichi agenti sul terrapieno possono avere una distribuzione assolutamente libera.
- Può essere tenuta in conto la coesione interna del terreno e la forza di adesione tra terreno e muro.
- Si può calcolare la spinta di un muro con mensola aerea stabilizzante a monte, al di sotto della quale si crea un vuoto nel terreno.
- È possibile conoscere l'esatto andamento delle pressioni agenti sul profilo del muro anche nei casi sopra detti, in cui tale andamento non è lineare, ma la cui distribuzione incide sul calcolo delle sollecitazioni interne.
- Si può supporre anche l'esistenza una linea di rottura del cuneo interna, che va dal vertice estremo della mensola di fondazione a monte fino a intersecare il paramento, inclinata di un certo angolo legato a quello di attrito interno del terreno

stesso. Si può quindi conoscere l'esatta forma del cuneo di spinta, per cui le forze in gioco variano in quanto solo una parte di esso è a contatto con il paramento. Il peso proprio del terreno portato sarà solo quello della parte di terrapieno che realmente rimarrà solidale con la fondazione e non risulterà interessato da scorrimenti, quindi in generale un triangolo. Ciò fa si che il peso gravante sulla fondazione può risultare notevolmente inferiore a quello ricavato con i metodi usuali, dal momento che una parte è già stata conteggiata nel cuneo di spinta.

Per quanto riguarda la spinta passiva, quella del terrapieno a valle, le uniche differenza rispetto a quanto detto consistono nel fatto che le forze di attrito e di coesione tra le superfici di scorrimento del cuneo hanno la direzione opposta che nel caso di spinta attiva, nel senso che si oppongono a un moto di espulsione verso l'alto del cuneo, e la procedura iterativa va alla ricerca di un valore minimo piuttosto che un massimo.

Nei casi di fondazione su pali o muri tirantati si può ritenere più giusto adottare un tipo di spinta a riposo, che considera il cuneo di terreno non ancora formato e spostamenti dell'opera nulli o minimi. Tale spinta è in ogni caso superiore a quella attiva e la sua entità si dovrebbe basare su considerazioni meno semplicistiche. Il programma opera prendendo come riferimento una costante di spinta pari a:

$$K_o = 1 - 0.9 \times sen \phi$$

essendo φ l'angolo di attrito interno del terreno, formula che si trova diffusamente in letteratura. Se tale deve essere la costante di spinta per un terreno uniforme, ad estradosso rettilineo orizzontale e privo di sovraccarichi e di azione sismica, viene ricavato un fattore di riduzione dell'angolo di attrito interno del terreno, tale che utilizzando questo angolo ridotto e la consueta procedura per il calcolo della spinta attiva, la costante fittizia di spinta attiva corrisponda alla costante a riposo della formula sopra riportata. Una volta ricavato questo fattore riduttivo, il programma procede al calcolo con le procedure standard, mettendo in gioco le altre variabili, quali la sagomatura dell'estradosso e degli strati, la presenza di sovraccarichi variamente distribuiti e la condizione sismica. La giustificazione di ciò risiede nella considerazione in base alla quale in condizioni di spinta a riposo, gli spostamenti interni al

terreno sono ridotti rispetto alla spinta attiva, quindi l'attrito che si mobilita è una parte di quello massimo possibile, e di conseguenza

In base a queste considerazioni di ordine generale, il programma opera come segue:

- Si definisce la geometria di tutti i vari cunei di spinta di tentativo, facendo variare l'angolo di scorrimento dalla parte di monte da 0 fino al valore limite 90 φ. Quindi in caso di terreno multistrato, la superficie di scorrimento sarà costituita da una spezzata con inclinazioni differenti da strato a strato. Ciò assicura valori di spinta maggiori rispetto a una eventuale linea di scorrimento unica rettilinea. L'angolo di scorrimento interno, quello dalla parte del paramento, qualora si attivi la procedura "Coulomb estes" è posto pari a 3/4 dell'angolo utilizzato a monte. Tale percentuale è quella che massimizza il valore della spinta. È possibile però attivare la procedura "Coulomb classico", in cui tale superficie si mantiene verticale, ma utilizzando in ogni caso l'angolo di attrito tra terreno e muro.
- Si calcola l'entità complessiva dei sovraccarichi agenti sul terrapieno che ricadono nella porzione di estradosso compresa nel cuneo di spinta.
- Si calcola il peso proprio del cuneo di spinta e le eventuali componenti sismiche orizzontali e verticali dovute al peso proprio ed eventualmente anche ai sovraccarichi agenti sull'estradosso.
- Si calcolano le eventuali azioni tangenziali sulle superfici interne dovute alla coesione interna e all'adesione tra terreno e muro.
- In base al rispetto dell'equilibrio alla traslazione verticale e orizzontale, nota l'inclinazione delle spinte sulle superfici interne (pari all'angolo di attrito), sviluppato in base a tutte le forze agenti sul concio, si ricavano le forze incognite, cioè le spinte agenti sul paramento e sulla superficie di scorrimento interna del cuneo.
- Si ripete la procedura per tutti i cunei di tentativo, ottenuti al variare dell'angolo alla base. Il valore massimo (minimo nel caso di spinta passiva) tra tutti quelli calcolati corrisponde alla spinta del terrapieno.

COMBINAZIONI DI CARICO

la spinta risultante cresce.

Il programma opera in ottemperanza alle norme attuali per quanto riguarda le combinazioni di carico da usare per i vari tipi di verifiche. In particolare viene rispettato quanto segue.

- Le verifiche di resistenza del paramento e della fondazione SLU vengono effettuate in base alle combinazioni di carico del tipo A1, riportate nei tabulati di stampa.

- Le verifiche geotecniche di portanza e scorrimento vengono effettuate in base alle combinazioni di tipo A1 e A2, in caso di approccio del tipo 1, oppure utilizzando le sole combinazioni del tipo A1, in caso di approccio 2.
- Il sisma verticale viene considerato alternativamente in direzione verso l'alto e verso il basso. La spinta riportata nei tabulati si riferisce al caso in cui la spinta risulta maggiore.
- Le verifiche al ribaltamento vengono svolte utilizzando i coefficienti riportati in norma nella tabella 6.2.I secondo le modalità previste dalla norma stessa, annullando quindi i contributi delle singole azioni che abbiano un effetto stabilizzante.
- I coefficienti delle combinazioni di carico riportati nei tabulati di stampa si riferiscono esclusivamente ai sovraccarichi applicati sul terrapieno e sul muro stesso. Il peso proprio strutturale del muro e quello del terreno di spinta vengono trattai in base a quanto prevede la norma per i pesi propri strutturali e non strutturali, a prescindere dai coefficienti utilizzati per le varie combinazioni.

VERIFICA AL RIBALTAMENTO

La verifica al ribaltamento si effettua in sostanza come equilibrio alla rotazione di un corpo rigido sollecitato da un sistema di forze, ciascuna delle quali definita da un'intensità, una direzione e un punto di applicazione.

Non va eseguita se la fondazione è su pali. Le forze che vengono prese in conto sono le seguenti:

- Spinta attiva complessiva del terrapieno a monte.
- Spinta passiva complessiva del terrapieno a valle (da considerare nella quota parte indicata nei dati generali).
- Spinta idrostatica dell'acqua della falda a monte, a valle e sul fondo.
- Forze esplicite applicate sul muro in testa, sulla mensola area a valle e sulla mensola di fondazione a valle.
- Forze massime attivabili nei tiranti per moto di ribaltamento.
- Forze di pretensione dei tiranti.
- Peso proprio del muro composto con l'eventuale componente sismica.
- Peso proprio della parte di terrapieno solidale con il muro composto con l'eventuale componente sismica.

Di ciascuna di queste forze verrà calcolato il momento, ribaltante o stabilizzante, rispetto ad un punto che è quello più in basso dell'estremità esterna della mensola di fondazione a valle. In presenza di dente di fondazione disposto a valle, il punto di equilibrio è quello più esterno al di sotto del dente.

Ai fini del calcolo del momento stabilizzante o ribaltante, esso per ciascuna forza è ottenuto dal prodotto dell'intensità della forza per la distanza minima tra la linea d'azione della forza e il punto di rotazione. Qualora tale singolo momento abbia un effetto ribaltante verrà conteggiato nel momento ribaltante complessivo, qualora invece abbia un effetto stabilizzante farà parte del momento stabilizzante complessivo. Può quindi accadere che il momento ribaltante sia pari a 0, e ciò fisicamente significa che incrementando qualunque forza, ma mantenendone la linea d'azione, il muro non andrà mai in ribaltamento.

Il coefficiente di sicurezza al ribaltamento è dato dal rapporto tra il momento stabilizzante complessivo e quello ribaltante. La verifica viene effettuata per tutte le combinazioni di carico previste.

VERIFICA ALLO SCORRIMENTO

La verifica allo scorrimento è effettuata come equilibrio alla traslazione di un corpo rigido, sollecitato dalle stesse forze prese in esame nel caso della verifica a ribaltamento, tranne per il fatto che per i tiranti il sistema di forze è quello che si innesca per moto di traslazione. Ciascuna forza ha una componente parallela al piano di scorrimento del muro, che a seconda della direzione ha un effetto stabilizzante o instabilizzante, e una componente ad esso normale che, se di compressione, genera una reazione di attrito che si oppone allo scorrimento. Una ulteriore parte dell'azione stabilizzante è costituita dall'eventuale forza di adesione che si suscita tra il terreno e la fondazione.

In presenza di dente di fondazione, la linea di scorrimento non è più quella di base della fondazione, ma è una linea che attraversa il terreno sotto la fondazione, e che congiunge il vertice basso interno del dente con l'estremo della mensola di fondazione opposta. In tal caso quindi l'attrito e l'adesione sono quelli interni del terreno. In questo caso viene conteggiato pure il peso della parte di terreno sottostante alla fondazione che nel moto di scorrimento rimane solidale con il muro.

Il coefficiente di sicurezza allo scorrimento è dato dal rapporto tra l'azione stabilizzante complessiva e quella instabilizzante. La verifica viene effettuata per tutte le combinazioni di carico previste.

CAPACITÀ PORTANTE DEL TERRENO DI FONDAZIONE

Nel caso di fondazione diretta, si assume quale carico limite che provoca la rottura del terreno di fondazione quello espresso dalla formula di *Brinch-Hansen*. Tale formula fornisce il valore della pressione media limite sulla superficie d'impronta della fondazione, eventualmente parzializzata in base all'eccentricità. Esiste un tipo di pressione limite a lungo termine, in condizioni drenate, e un altro a breve termine in eventuali condizioni non drenate.

Le espressioni complete utilizzate sono le seguenti:

- In condizioni drenate:

$$Q_{\text{lim}} = \frac{1}{2} \Gamma \cdot B \cdot N_g \cdot i_g \cdot d_g \cdot b_g \cdot s_g \cdot g_g + C \cdot N_c \cdot i_c \cdot d_c \cdot b_c \cdot s_c \cdot g_c + Q \cdot N_q \cdot i_q \cdot d_q \cdot b_q \cdot s_q \cdot g_q$$

- In condizioni non drenate:

$$Q_{\lim} = C_u \cdot N_{c'} \cdot i_{c'} \cdot d_{c'} \cdot b_{c'} \cdot s_{c'} \cdot g_{c'} + Q \cdot i_{a'} \cdot d_{a'} \cdot b_{a'} \cdot s_{a'} \cdot g_{a'}$$

Fattori di portanza, ϕ in gradi:

$$N_q = \tan^2(45^\circ + \frac{\phi}{2}) \cdot e^{\pi \cdot \tan \phi}$$

$$N_c = (N_q - 1) \cdot \cot \phi$$

$$N_{c'} = 2 + \pi$$

$$N_g = 2 \cdot (N_q + 1) \cdot \tan \phi$$

Fattori di forma:

$$\begin{split} s_q &= 1 + 0.1 \cdot \frac{B}{L} \cdot \frac{1 + \sec \phi}{1 - \sec \phi} \\ s_{q'} &= 1 \\ s_c &= 1 + 0.2 \cdot \frac{B}{L} \cdot \frac{1 + \sec \phi}{1 - \sec \phi} \\ s_{c'} &= 1 + 0.2 \cdot \frac{B}{L} \\ s_g &= s_q \end{split}$$

Fattori di profondità, K espresso in radianti:

$$\begin{aligned} d_q &= 1 + 2 \cdot \tan \phi \cdot (1 - \sin \phi)^2 \cdot K \\ d_{q'} &= 1 \\ d_c &= d_q - \frac{1 - d_q}{N_c \cdot \tan \phi} \\ d_g &= 1 \\ \text{dove } K = \frac{D}{B} \text{ se } \frac{D}{B} \leq 1 \text{ o } K = arc \tan \frac{D}{B} \text{ se } \frac{D}{B} > 1 \end{aligned}$$

Fattori di inclinazione dei carichi:

$$\begin{split} i_q &= \left[1 - \frac{H}{V + B \cdot L \cdot C_a \cdot \cot \phi}\right]^m \\ i_{q'} &= 1 \\ i_c &= i_q - \frac{1 - i_q}{N_c \cdot \tan \phi} \\ i_{c'} &= 1 - \frac{m \cdot H}{B \cdot L \cdot C_u \cdot N_c} \\ i_g &= \left[1 - \frac{H}{V + B \cdot L \cdot C_a \cdot \cot \phi}\right]^{m+1} \\ &\quad \text{con } m = \frac{2 + \frac{B}{L}}{1 + \frac{B}{L}} \end{split}$$

Fattori di inclinazione del piano di posa, η in radianti:

$$\begin{split} b_q &= (1 - \eta \cdot \tan \phi)^2 \\ b_{q'} &= 1 \\ b_c &= b_q - \frac{1 - b_q}{N_c \cdot \tan \phi} \\ b_{c'} &= 1 - 2 \cdot \frac{\eta}{N_{c'}} \\ b_g &= g_q \end{split}$$

Fattori di inclinazione del terreno, β in radianti:

$$g_q = (1 - \tan \beta)^2$$

$$g_{q'} = 1$$

$$g_c = 1 - 2 \cdot \frac{\beta}{N_{c'}}$$

$$g_g = g_q$$

essendo:

- Γ = peso specifico del terreno di fondazione

- Q = sovraccarico verticale agente ai bordi della fondazione

- e = eccentricità della risultante M/N in valore assoluto

- $B = B_t - 2 \times e$, larghezza della fondazione parzializzata

- B_t = larghezza totale della fondazione

- C = coesione del terreno di fondazione

- D = profondità del piano di posa

- L = sviluppo della fondazione

- H = componente del carico parallela alla fondazione

- V = componente del carico ortogonale alla fondazione

- Cu = coesione non drenata del terreno di fondazione

- Ca = adesione alla base tra terreno e muro

 $-\eta$ = angolo di inclinazione del piano di posa

- β = inclinazione terrapieno a valle, se verso il basso (quindi ≥ 0)

MURI IN CALCESTRUZZO A MENSOLA

Sulle sezioni del paramento e delle varie mensole, aeree e di fondazione, si effettua il progetto delle armature e le verifiche a presso-flessione e taglio in corrispondenza di tutte le sezioni singolari (punti di attacco e di spigolo) e in tutte quelle intermedie ad un passo pari a quello imposto nei dati generali. Vengono applicate le formule classiche relative alle sezioni rettangolari in cemento armato, con il progetto dell'armatura necessaria.

CALCOLO DEI CEDIMENTI DEL TERRAPIENO A MONTE

Per il calcolo dei cedimenti permanenti causati dall'azione sismica, il programma opera come segue. Innanzitutto vengono calcolate le spinte per una ulteriore modalità di azione sismica, cioè quella relativa allo stato limite di danno (SLD). A seguito del calcolo di tali spinte, per le sole combinazioni sismiche, si calcola lo spostamento residuo del muro per traslazione rigida, ricavato in base alla seguente formulazione di *Richards & Elms*:

$$d = \frac{0.087 \times V^2}{Acc \times \left(\frac{A_{\lim}}{Acc}\right)^{-4}}$$

in cui si ha:

d = spostamento sismico residuo

 $V = 0.16 \times Acc \times g \times S \times Tc$

Acc = accelerazione sismica adimensionale SLD

g = 9.80665 = accelerazione di gravità

S = coefficiente di amplificazione stratigrafico

Tc = coefficiente di amplificazione topografico

Alim = accelerazione oltre la quale si innesca lo scorrimento della fondazione per superamento del limite dell'attrito

Una volta ricavato, per ciascuna combinazione di carico, tale spostamento orizzontale, si calcola il volume del terreno interessato a tale spostamento, pari allo spostamento stesso per l'altezza complessiva del muro, comprensiva dello spessore della fondazione. Il cedimento verticale del terreno a ridosso del muro viene quindi calcolato con la seguente formula (*Bowles* - metodo di *Caspe*):

$$Sv = 4 Vol/D$$

essendo Vol il volume di terreno interessato dallo spostamento del muro e D la distanza in orizzontale dal muro alla quale si annullano i cedimenti. Quest'ultima è assimilata alla dimensione orizzontale massima del cuneo di rottura del terreno spingente. Infine i cedimenti lungo il ratto interessato sono calcolati con legge decrescente col quadrato della distanza X dal paramento:

$$Sx = Sv * (X/D)^2$$

■ SPINTE DEL TERRAPIENO

Cmb n. : Numero della combinazione di carico

Fx tot : Componente orizzontale della spinta complessiva del terrapieno
Fy tot : Componente verticale della spinta complessiva del terrapieno

H tot : Altezza del punto di applicazione della risultante della spinta del terrapieno
 X tot : Ascissa del punto di applicazione della risultante della spinta del terrapieno

Fx tp : Componente orizzontale della spinta dovuta al peso proprio del terreno

portato dalla mensola di fondazione

Fy tp : Componente verticale della spinta dovuta al peso proprio del terreno

portato dalla mensola di fondazione

H tp : Altezza del punto di applicazione della risultante della spinta dovuta al peso

proprio del terreno portato dalla mensola di fondazione

X tp : Ascissa del punto di applicazione della risultante della spinta dovuta al

peso proprio del terreno portato dalla mensola di fondazione

Fx esp : Componente orizzontale della spinta aggiuntiva esplicita Fy esp : Componente verticale della spinta aggiuntiva esplicita

H esp : Altezza del punto di applicazione della risultante della spinta aggiuntiva

esplicita

X esp : Ascissa del punto di applicazione della risultante della spinta aggiuntiva

esplicita

Fx w : Componente orizzontale della spinta dell'acqua Fy w : Componente verticale della spinta dell'acqua

H w : Altezza del punto di applicazione della risultante della spinta dell'acqua
X w : Ascissa del punto di applicazione della risultante della spinta dell'acqua

K sta : Costante di spinta statica K sis : Costante di spinta sismica

C sif : Coefficiente di sicurezza al sifonamento (dato assente se non è stata

eseguita la verifica)

N.B.: Ascisse e altezze si intendono misurate a partire dal punto più a valle della fondazione del muro, quello attorno a cui avviene l'ipotetica rotazione del ribaltamento.

Tutte le spinte orizzontali si intendono positive se rivolte verso il paramento, quelle verticali se rivolte verso il basso.

□ CEDIMENTI VERTICALI TERRENO DI MONTE

Tipo Comb : Tipo di combinazione di carico

Comb n. : Numero della combinazione associata al tipo di combinazione

Sp.muro : Spostamento rigido residuo del muro per traslazione

Volume : Volume del terreno deformato dallo spostamento rigido

Dist.max : Distanza massima orizzontale dal muro alla quale si annullano i

cedimenti

Ced.0/4 : Cedimento verticale a ridosso del muro

Ced.1/4 : Cedimento verticale ad 1/4 della distanza massima

Ced.2/4 : Cedimento verticale a 2/4 della distanza massima

Ced.3/4 : Cedimento verticale a 3/4 della distanza massima

CALCOLO DEI CEDIMENTI DEL TERRAPIENO A MONTE

Per il calcolo dei cedimenti permanenti causati dall'azione sismica, il programma opera come segue. Innanzitutto vengono calcolate le spinte per una ulteriore modalità di azione sismica, cioè quella relativa allo stato limite di danno (SLD). A seguito del calcolo di tali spinte, per le sole combinazioni sismiche, si calcola lo spostamento residuo del muro per traslazione rigida, ricavato in base alla seguente formulazione di *Richards & Elms*:

$$d = \frac{0.087 \times V^2}{Acc \times \left(\frac{A_{\text{lim}}}{Acc}\right)^{-4}}$$

in cui si ha:

d = spostamento sismico residuo

 $V = 0.16 \times Acc \times g \times S \times Tc$

Acc = accelerazione sismica adimensionale SLD

g = 9.80665 = accelerazione di gravità

S = coefficiente di amplificazione stratigrafico

Tc =coefficiente di amplificazione topografico

Alim = accelerazione oltre la quale si innesca lo scorrimento della fondazione per superamento del limite dell'attrito

Una volta ricavato, per ciascuna combinazione di carico, tale spostamento orizzontale, si calcola il volume del terreno interessato a tale spostamento, pari allo spostamento stesso per l'altezza complessiva del muro, comprensiva dello spessore della fondazione. Il cedimento verticale del terreno a ridosso del muro viene quindi calcolato con la seguente formula (*Bowles* - metodo di *Caspe*):

$$Sv = 4 Vol/D$$

essendo Vol il volume di terreno interessato dallo spostamento del muro e D la distanza in orizzontale dal muro alla quale si annullano i cedimenti. Quest'ultima è assimilata alla dimensione orizzontale massima del cuneo di rottura del terreno spingente. Infine i cedimenti lungo il ratto interessato sono calcolati con legge decrescente col quadrato della distanza X dal paramento:

$$Sx = Sv * (X/D)^2$$

• LEGENDA DELLE ABBREVIAZIONI

• CARATTERISTICHE DELLA SOLLECITAZIONE NEL MURO

Distanza : Distanza della sezione dalla sezione iniziale del tipo di

elemento (estremo libero)

Angolo : Angolo di inclinazione della sezione rispetto al piano

orizzontale

N : Sforzo normale, positivo se di compressione

M : Momento flettente, positivo se antiorario (ribaltante)

T : Sforzo di taglio, positivo se diretto verso sinistra (lembo più a valle)

N.B.: Le caratteristiche N, M e T si intendono riferite ad 1 metro di sezione di muro, o a tutta la sezione nel caso di contrafforti o cordoli.

VERIFICHE PER IL MURO IN C.A.

Sez. N. : Numero della sezione da verificare

Ele : Tipo di elemento verificato:

1 = PARAMENTO

2 = MENSOLA AEREA A VALLE 3 = MENSOLA AEREA A MONTE

4 = MENSOLA DI FONDAZIONE A VALLE

5 = MENSOLA DI FONDAZIONE A MONTE

6 = DENTE DI FONDAZIONE

7 = SEZIONE TRASVERSALE PARAMENTO 8 = SEZIONE TRASVERSALE FONDAZIONE

9 = CONTRAFFORTE 10= CORDOLO

Dist : Distanza della sezione dalla sezione iniziale del tipo di elemento (mezzeria della campata per

sezioni verticali del paramento e cordoli)

H : Altezza della sezione

B : Larghezza della sezione (nel caso di contrafforti con sezione a T, tale dato è relativo alla larghezza

dell'anima della sezione, al netto quindi dei tratti di paramento collaborante)

Xg : Ascissa del baricentro della sezione

Yg : Altezza del baricentro della sezione. Ascissa e altezza si intendono misurate a partire dal punto più a

valle della fondazione del muro, quello attorno a cui avviene l'ipotetica rotazione del ribaltamento

Ang : Angolo di inclinazione della sezione rispetto al piano orizzontale

Cmb fle : Combinazione di carico più gravosa a presso-flessione. Un valore maggiore di 100 indica una

combinazione del tipo A2

Nsdu : Sforzo normale di calcolo relativo alla combinazione più gravosa a presso-flessione, agente su I

metro di muro o su tutta la sezione se si tratta di contrafforti o cordoli. Positivo se di compressione

Msdu : Momento flettente di calcolo relativo alla combinazione più gravosa a presso-flessione, agente su 1

metro di muro o su tutta la sezione se si tratta di contrafforti o cordoli. Positivo se antiorario

(ribaltante)

A sin : Area di armatura nel lembo di sinistra (quello più a valle) della sezione, relativa a 1 metro di muro o a tutta la sezione se si tratta di contrafforti o cordoli (nel caso di contrafforti con sezione a T, tale

a tutta la sezione se si tratta ai contrafforti o coraoti (nei caso ai contrafforti con sezione a 1, tale area va distribuita su tutta la larghezza delle ali e non è cumulabile all'area dei corrispondenti ferri

verticali per la sezione orizzontale del paramento in quanto in essa già compresa)

A des : Area di armatura nel lembo di destra (quello più a monte) della sezione, relativa a 1 metro di muro o

a tutta la sezione se si tratta di contrafforti o cordoli

An. s : Angolo della armatura di sinistra rispetto alla normale della sezione. L'angolo si intende positivo se

l'armatura va a divergere all'aumentare della distanza

An. d : Angolo della armatura di destra rispetto alla normale della sezione. L'angolo si intende positivo se

l'armatura va a divergere all'aumentare della distanza

Nrdu : Sforzo normale associato al momento resistente ultimo sulla sezione, agente su 1 metro di muro o su

tutta la sezione se si tratta di contrafforti o cordoli. Positivo se di compressione

Mrdu : Momento flettente resistente ultimo sulla sezione, agente su 1 metro di muro o su tutta la sezione se si

tratta di contrafforti o cordoli

Cmb tag : Combinazione di carico più gravosa a taglio. Un valore maggiore di 100 indica una combinazione

del tipo A2

Vsdu : Sforzo di taglio di calcolo relativo alla combinazione più gravosa a taglio, agente su 1 metro di muro

o su tutta la sezione se si tratta di contrafforti o cordoli. Positivo se diretto verso sinistra (lembo più a

valle)

Vrdu c : Taglio resistente ultimo di calcolo per il meccanismo resistente affidato al calcestruzzo

Vrdu s : Taglio resistente ultimo di calcolo per il meccanismo resistente affidato alle staffe

A sta : Area di staffe necessaria nel concio precedente la sezione

Verif. : Indicazione soddisfacimento delle verifiche di resistenza

VERIFICHE FESSURAZIONE MURI

Muro N. : Numero del muro

Ele : Tipo di elemento verificato

Tipo Comb : Tipo di combinazione di carico

Cmb fes : Combinazione di carico più gravosa a fessurazione, tra quelle del tipo

considerato

Sez. fes : Sezione dell'elemento in cui risulta più gravosa la verifica a

fessurazione

N fes : Sforzo normale di calcolo in corrispondenza della sezione considerata

M fes : Momento flettente di calcolo in corrispondenza della sezione

considerata

Dist. : Distanza media tra le fessure in condizioni di esercizio

W ese : Ampiezza media delle fessure in condizioni di esercizio

W max : Ampiezza massima limite tra le fessure

Verifica : Indicazione soddisfacimento delle verifiche

• VERIFICHE TENSIONI DI ESERCIZIO MURI

Muro N. : Numero del muro

Ele : Tipo di elemento verificato

Tipo Comb : Tipo di combinazione di carico

Cmb åc : Combinazione di carico più gravosa per le tensioni nel calcestruzzo, tra

quelle del tipo considerato

Sez. σ_c : Sezione del palo nella quale la verifica della tensione nel calcestruzzo è

più gravosa

 $N \sigma_c$: Sforzo normale di calcolo in corrispondenza della sezione considerata

M σ_c : Momento flettente di calcolo in corrispondenza della sezione

considerata

σ_c : Tensione massima nel calcestruzzo in condizioni di esercizio

σ_c max : Tensione massima limite nel calcestruzzo

Cmb σ_f : Combinazione di carico più gravosa per le tensioni nell'acciaio, tra

quelle del tipo considerato

Sez. σ_f : Sezione del palo nella quale la verifica della tensione nell'acciaio è più

gravosa

 $N \sigma_f$: Sforzo normale di calcolo in corrispondenza della sezione considerata

M σ_f : Momento flettente di calcolo in corrispondenza della sezione

considerata

σ_f : Tensione massima nell'acciaio in condizioni di esercizio

σ_f max : Tensione massima limite nell'acciaio

Verifica : Indicazione soddisfacimento delle verifiche

CEDIMENTI VERTICALI TERRENO DI MONTE

Tipo Comb : Tipo di combinazione di carico

Comb n. : Numero della combinazione associata al tipo di combinazione

Sp.muro : Spostamento rigido residuo del muro per traslazione

Volume : Volume del terreno deformato dallo spostamento rigido

Dist.max : Distanza massima orizzontale dal muro alla quale si annullano i

cedimenti

Ced.0/4 : Cedimento verticale a ridosso del muro

Ced.1/4 : Cedimento verticale ad 1/4 della distanza massima

Ced.2/4 : Cedimento verticale a 2/4 della distanza massima

Ced.3/4 : Cedimento verticale a 3/4 della distanza massima

SOFTWARE: C.D.W Compu	ter Design of Walls - Rel.2019 -	Lic. Nro: 30897	

	DATI DI (CALCOLO				
PARAMETRI SISMICI						
Vita Nominale (Anni)	50	Classe d' Us	6O		SECONDA	
Longitudine Est (Grd)	14,69473	Latitudine N	ord (Grd)		37,38427	
Categoria Suolo	В	Coeff. Cond	iz. Topogr. ´		1,00000	
Probabilita' Pvr (SLV)	0,10000		rno Anni (SL)	/)	475,00000	
Accelerazione Ag/g (SLV)	0,17600	Fattore Strat		,	1,20000	
Probabilita' Pvr (SLD)	0,63000		rno Anni (SLI	D)	50,00000	
Accelerazione Ag/g (SLD)	0,05200		·	,		
	TEORIE D	I CALCO	LO		-	
Verifiche	e effettuate con il m	etodo degli sta	ati limite ultim			
Portanza	a dei pali calcolata	con la teoria di	Norme A.G.I			
Portanza terrend	o di fondazione calc	colata con la te	oria di Brinch	-Hansen		
		I CALCO				
	a l'azione sismica d).	
	ata l'azione sismica					
	to dell'effetto stabili		rze applicate	al muro.		
Rapporto tra il taglio medio e quel	• •				1,00	
Coeff. maggiorativo diametro perf					,	
Percentuale spinta a valle per la v	to			50		
Percentuale spinta a valle per la v				0		
Percentuale spinta a valle per la v	е			100		
Percentuale spinta a valle per cal					100	
COEFFIC	SIENTI PAR		EOTECN			
		TABEL		TAE	BELLA M2	
Tangente Resist. Taglio				1,25		
Peso Specifico		1,00		1,00		
Coesione Efficace (c'k)	,			1,25		
Resist. a taglio NON drenata (cuk)		1,00		1,40	
Tipo Approccio		Combinazione Unica: (A1+M1+R3)				
Tipo di fondazione					DO DALL	
COEFFICIENTI R3	R3 STATICI		SISMICI		R3 PALI	
Capacita' Portante	1,4		1,20			
Scorrimento	1,1		1,00			
Ribaltamento	1,1					
Resist. Terreno Valle	1,40 1,20			4.05		
Resist, alla Base					1,35	
Resist. Lat. a Compr.					1,35	
Resist. Lat. a Traz.				1,25		
Carichi Trasversali					1,30	

CARATTERISTICHE MATERIALI				
CAR	ATTERIS	STICHE	DEI MATERIAL	.1
CARA	TTERIS	TICHE	C. A. ELEVAZION	NE
Classe Calcestruzzo	C28/3	35	Classe Acciaio	B450C
Modulo Elastico CLS	323082	kg/cmq	Modulo Elastico Acc	2100000 kg/cmq
Coeff. di Poisson	0,2		Tipo Armatura	POCO SENSIBILI
Resist.Car. CLS 'fck'	280,0	kg/cmq	Tipo Ambiente	ORDINAR. XC2/XC3
Resist. Calcolo 'fcd'	158,0	kg/cmq	Resist.Car.Acc 'fyk'	4500,0 kg/cmq
Tens. Max. CLS 'rcd'	158,0	kg/cmq	Tens. Rott.Acc 'ftk'	4500,0 kg/cmq
Def.Lim.El. CLS 'eco'	0,20	%	Resist. Calcolo'fyd'	3913,0 kg/cmq
Def.Lim.Ult CLS 'ecu'	0,35	%	Def.Lim.Ult.Acc'eyu'	1,00 %
Fessura Max.Comb.Rare		mm	Sigma CLS Comb.Rare	168,0 kg/cmq
Fessura Max.Comb.Perm	0,3	mm	Sigma CLS Comb.Perm	126,0 kg/cmq

CARATTERISTICHE MATERIALI					
CARATTERISTICHE DEI MATERIALI					
Fessura Max.Comb.Freq	0,4	mm	Sigma Acc Comb.Rare	3600,0	kg/cmq
Peso Spec.CLS Armato	2500	kg/mc	Copriferro Netto	2,5	cm
CARA	TTERIS	TICHE	C. A. FONDAZION	٧E	-
Classe Calcestruzzo	C28/	35	Classe Acciaio	B ²	450C
Modulo Elastico CLS	323082	kg/cmq	Modulo Elastico Acc	210000	
Coeff. di Poisson	0,2		Tipo Armatura	1	SENSIBILI
Resist.Car. CLS 'fck'	280,0	kg/cmq	Tipo Ambiente	1	R. XC2/XC3
Resist. Calcolo 'fcd'	158,0	kg/cmq	Resist.Car.Acc 'fyk'	4500,0	kg/cmq
Tens. Max. CLS 'rcd'	158,0	kg/cmq	Tens. Rott.Acc 'ftk'	4500,0	kg/cmq
Def.Lim.El. CLS 'eco'	0,20	%	Resist. Calcolo'fyd'	3913,0	kg/cmq
Def.Lim.Ult CLS 'ecu'	0,35	%	Def.Lim.Ult.Acc'eyu'	1,00	%
Fessura Max.Comb.Rare		mm	Sigma CLS Comb.Rare	168,0	kg/cmq
Fessura Max.Comb.Perm	0,3	mm	Sigma CLS Comb.Perm	126,0	kg/cmq
Fessura Max.Comb.Freq	0,4	mm	Sigma Acc Comb.Rare	3600,0	kg/cmq
Peso Spec.CLS Armato	2500	kg/mc	Peso Spec.CLS Magro	2200	kg/mc
Copriferro Netto	2,5	cm			
CARATTE			MENTO ARMATO	PALI	
Classe Calcestruzzo	C20/		Classe Acciaio	1	450C
Modulo Elastico CLS	299619	kg/cmq	Modulo Elastico Acc	210000	•
Coeff. di Poisson	0,2	. ,	Tipo Armatura		SENSIBILI
Resist.Car. CLS 'fck'	200,0	kg/cmq	Tipo Ambiente	•	ARIA XC1
Resist. Calcolo 'fcd'	110,0	kg/cmq	Resist.Car.Acc 'fyk'	3800,0	kg/cmq
Tens. Max. CLS 'rcd'	110,0	kg/cmq	Tens. Rott.Acc 'ftk'	3800,0	kg/cmq
Def.Lim.El. CLS 'eco'	0,20	%	Resist. Calcolo'fyd'	3250,0	kg/cmq
Def.Lim.Ult CLS 'ecu'	0,35	%	Def.Lim.Ult.Acc'eyu'	1,00	%
Fessura Max.Comb.Rare	0.0	mm	Sigma CLS Comb.Rare	119,0	kg/cmq
Fessura Max.Comb.Perm	0,2	mm	Sigma CLS Comb.Perm	92,0	kg/cmq
Fessura Max.Comb.Freq	0,3	mm	Sigma Acc Comb.Rare	3040,0	kg/cmq
Peso Spec.CLS Armato	2500	kg/mc	Copriferro Netto	2,0	cm
CARATTER			ERIALE MURI GR	RAVITA'	0 1/2/2/22
Resistenza di calcolo a compre				100,	• .
Resistenza di calcolo a trazion	e dei materi	aie		0,	
Peso specifico del materiale	o maara di f	ondoziono		250 220	0
Peso specifico del calcestruzzo	o magro di i	oridazione	CALCESTRUZZO MACE		J
Denominazione del materiale CALCESTRUZZO MAGRO NON ARMATO C A R A T T E R I S T I C H E D E I M I C R O P A L I (Tipologia=Nessuna)					
			M I C R O P A L I (Tipologia		300 t/cmq
Modulo elastico omogeneizzato del materiale: Sforzo di taglio massimo di calcolo nel singolo micropalo 75 t					
Momento flettente massimo di calcolo nel singolo micropalo 75 tm					
Peso specifico omogeneizzato del materiale 2500 Kg/mc					
Denominazione tipo di micropa			MICROPALO DI		ooo Ng/IIIc
	RATTE	RISTIC		LOLIVII IO	
Tensione di snervamento dell'a		KIO I I C	HE DEI HINANII	3250	Kg/cmq
Modulo elastico dell'acciaio	Journal			2100	t/cmq
	oraggi effet	tuati con hu	lbo di calcestruzzo iniettato	2100	y on 19
And	oluggi chet	tadti oon bu	ibo di odiocoti dello il lictiato		

DATI TERRAPIENO MURO 2	
Muro n.2	
DATI TERRAPIENO	
Altezza del terrapieno a monte nel punto di contatto col muro:	1,80 m
Altezza del terrapieno a valle nel punto di contatto col muro:	1,00 m
Inclinaz. media terreno valle(positivo se scende verso valle):	0 °
Angolo di attrito tra fondazione e terreno	17 °

DATI TERRAPIENO MURO 2		
Muro n.2		
DATI TERRAPIENO		
Adesione tra fondazione e terreno	0,00	Kg/cmq
Angolo di attrito tra fondazione e terreno in presenza acqua	17	0
Adesione tra fondazione e terreno in presenza di acqua	0,00	Kg/cmq
Permeabilita' Terreno	BASSA	
Muro Vincolato	NO	
Coefficiente BetaM	0,380	
Coefficiente di intensita' sismica orizzontale	0,080	
Coefficiente di intensita' sismica verticale	0,040	

DATI STRATIGR. MURO 2		
STRATIGRAFIA DEL TERRENO		
STRATO n. 1 :		
Spessore dello strato:	4,00	m
Angolo di attrito interno del terreno:	17	0
Angolo di attrito tra terreno e muro:	11	0
Coesione del terreno in condizioni drenate:	0,10	Kg/cmq
Adesione tra il terreno e il muro in condizioni drenate:	0,00	Kg/cmq
Peso specifico apparente del terreno in assenza di acqua:	1850	Kg/mc
Coesione del terreno in condizioni non drenate:	0,40	Kg/cmq
Adesione tra il terreno e il muro in condizioni non drenate:	0,00	Kg/cmq
Peso specifico efficace del terreno sommerso:	850	Kg/mc
Coefficiente di Lambe per attrito negativo pali:		0,00
STRATO n. 2 :		
Spessore dello strato:	3,00	m
Angolo di attrito interno del terreno:	15	0
Angolo di attrito tra terreno e muro:	10	0
Coesione del terreno in condizioni drenate:	0,40	Kg/cmq
Adesione tra il terreno e il muro in condizioni drenate:	0,00	Kg/cmq
Peso specifico apparente del terreno in assenza di acqua:	1850	Kg/mc
Coesione del terreno in condizioni non drenate:	0,40	Kg/cmq
Adesione tra il terreno e il muro in condizioni non drenate:	0,00	Kg/cmq
Peso specifico efficace del terreno sommerso:	850	Kg/mc
Coefficiente di Lambe per attrito negativo pali:		0,00

GEOMETRIA MURO 2		
MURO A MENSOLA IN CEMENTO ARMATO		
Altezza del paramento:	2,10	m
Spessore del muro in testa (sezione orizzontale):	30	cm
Scostamento della testa del muro (positivo verso monte):	0	cm
Spessore del muro alla base (sezione orizzontale):	40	cm

GEOMETRIA MURO 2		
FONDAZIONE DIRETTA		
Lunghezza della mensola di fondazione a valle:	30	cm
Lunghezza della mensola di fondazione a monte:	130	cm
Spessore minimo della mensola a valle:	30	cm
Spessore massimo della mensola a valle:	30	cm
Spessore minimo della mensola a monte:	30	cm
Spessore massimo della mensola a monte:	30	cm

GEOMETRIA MURO 2		
FONDAZIONE DIRETTA		
Inclinazione del piano di posa della fondazione:	0	0
Sviluppo della fondazione:	1,0	m
Spessore del magrone:	20	cm
Altezza del dente di fondazione:	10	cm
Spessore minimo del dente di fondazione:	30	cm
Spessore massimo del dente di fondazione:	30	cm
Il dente di fondazione e' posizionato all'estremita' di monte		

CARICHI MURO 2		
SOVRACCARICHI SUL TERRAPIENO		
CONDIZIONE n.	1	
Sovraccarico uniformemente distribuito generalizzato:	0,50	t/mq
Sovraccarico uniformemente distribuito a nastro:	0,00	t/mq
Distanza dal muro del punto di inizio del carico a nastro:	0,00	m
Distanza dal muro del punto di fine del carico a nastro:	0,00	m
Sovraccarico concentrato lineare lungo lo sviluppo:	0,00	t/m
Distanza dal muro del punto di applicazione carico lineare:	1,00	m
Carico concentrato puntiforme:	0,00	t
Interasse tra i carichi puntiformi lungo lo sviluppo:	1,00	m
Distanza dal muro punto di applicazione carico puntiforme:	0,00	m
Sovraccarico uniformemente distribuito terrapieno a valle:	0,00	t/mq
	, ,	'

COMBINAZIONI MURO 2

Cond.	Descrizione
Num.	Condizione
1	PERMANENTE

				C	OMBINAZ	IONI MUR	O 2				
			COM	BINAZ	IONI E) I CAF	RICO S	.L.U. A 1			
Comb	Cond.1	Cond.2	Cond.3	Cond.4	Cond.5	Cond.6	Cond.7	Cond.8	Cond.9	Cond10	Sisma
1	1,50										0,00
2	1,00										1,00

				C	OMBINAZI	ONI MUR	O 2				
			СОМВІ	NAZIO	NI DI	CARI	CO S.L.E	E. RAR	A		
Comb	Cond.1	Cond.2	Cond.3	Cond.4	Cond.5	Cond.6	Cond.7	Cond.8	Cond.9	Cond10	Sisma
1	1,00										

				C	OMBINAZI	ONI MUR	O 2				
			COMBI	NAZIO	NI DI	CARIO	O S.L.E	. FRE	Q .		
Comb	Cond.1	Cond.2	Cond.3	Cond.4	Cond.5	Cond.6	Cond.7	Cond.8	Cond.9	Cond10	Sisma
1	1,00										

				C	OMBINAZI	ONI MUR	O 2				
			COMBI	NAZIO	NI DI	CARIO	O S.L.E	. PERI	M.		
Comb	Cond.1	Cond.2	Cond.3	Cond.4	Cond.5	Cond.6	Cond.7	Cond.8	Cond.9	Cond10	Sisma
1	1,00										

							SPINTE A	A MONT	E MURO :	2 - Tabell	a Combi	nazioni:	A1						
						S	PINTE	DEL	TER	RAPIE	NO A	1 O M	NTE						
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis	C sif
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
1	3829	2353	0,73	1,77	0	4609	0,00	1,18	0	0	0,00	0,00	0	0	0,00	0,00	0,595	0,595	0,00
2	3402	2292	0,72	1,73	262	3397	1,15	1,16	0	0	0,00	0,00	0	0	0,00	0,00	0,570	0,727	0,00

						SPIN	TE A VA	LLE MU	RO 2 - Ta	bella Cor	nbinazio	ni: A1						
						SPIN	TE D	EL 1	ΓERRA	PIENO	Α \	/ALLE						
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m		
1	1537	329	0,33	0,11	0	189	0,00	0,21	0	0	0,00	0,00	0	0	0,00	0,00	1,699	1,70
2	1383	314	0,33	0,12	-14	169	0,51	0,21	0	0	0,00	0,00	0	0	0,00	0,00	1,709	1,53

						S	PINTE A	MONTE	MURO 2	- Tabella	Combin	azioni: I	Rare						
	SPINTE DEL TERRAPIENO A MONTE																		
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis	C sif
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
1	2858	1750	0,72	1,77	0	3498	0,00	1,18	0	0	0,00	0,00	0	0	0,00	0,00	0,595	0,595	0,00

						SPINT	E A VAL	LE MUF	RO 2 - Tab	ella Com	binazio	ni: Rare						
	SPINTE DEL TERRAPIENO A VALLE																	
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m		
1	1537	329	0,33	0,11	0	189	0,00	0,21	0	0	0,00	0,00	0	0	0,00	0,00	1,699	1,70

						SI	PINTE A	MONTE	MURO 2	- Tabella	Combin	azioni: F	req.						
	SPINTE DEL TERRAPIENO A MONTE																		
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis	C sif
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
1	2858	1750	0,72	1,77	0	3498	0,00	1,18	0	0	0,00	0,00	0	0	0,00	0,00	0,595	0,595	0,00

						SPINT	E A VAL	LE MUR	O 2 - Tab	ella Com	binazior	ni: Freq.						
	SPINTE DEL TERRAPIENO A VALLE																	
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m		
1	1537	329	0,33	0,11	0	189	0,00	0,21	0	0	0,00	0,00	0	0	0,00	0,00	1,699	1,70

						SF	PINTE A	MONTE	MURO 2	- Tabella	Combina	azioni: P	erm.						
	SPINTE DEL TERRAPIENO A MONTE																		
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis	C sif
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
1	2858	1750	0,72	1,77	0	3498	0,00	1,18	0	0	0,00	0,00	0	0	0,00	0,00	0,595	0,595	0,00

						SPINTE	A VAL	LE MUR	O 2 - Tab	ella Comb	oinazion	i: Perm.						
	SPINTE DEL TERRAPIENO A VALLE																	
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m		
1	1537	329	0,33	0,11	0	189	0,00	0,21	0	0	0,00	0,00	0	0	0,00	0,00	1,699	1,70

	SPINTE A MONTE MURO 2 - Tabella Combinazioni: SLD																		
	SPINTE DEL TERRAPIENO A MONTE																		
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis	C sif
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
2	3044	1920	0,72	1,76	101	3477	1,17	1,18	0	0	0,00	0,00	0	0	0,00	0,00	0,589	0,639	0,00

VERIFICHE STABILITA' MURO 2											
VERIFICA AL RIBALTAMENTO											
Combinazione di carico piu' svantaggiosa:	2	A1									
Momento forze ribaltanti complessivo: 2975											
Momento stabilizzante forze peso e carichi:	10416	Kgm/m									
Momento stabilizzante massimo dovuto ai tiranti:	0	Kgm/m									
Coefficiente sicurezza minimo al ribaltamento:	3,50										
LA VERIFICA RISULTA SODDISFATTA											

VERIFICHE STABILITA' MURO 2										
VERIFICA ALLO SCORRIMENTO										
Combinazione di carico piu' svantaggiosa:	2	A1								
Risultante forze che attivano lo scorrimento:	3950	Kg/m								
Risultante forze che si oppongono allo scorrimento:	6031	Kg/m								
Forza dei tiranti che si oppone allo scorrimento:	0	Kg/m								
Coefficiente sicurezza minimo allo scorrimento:	1,53									
LA VERIFICA RISULTA SODDISFATTA										

SOLLECITAZIONI MURO 2 - Tabella Combinazioni: A1												
	SOLLECITAZIONI MURO											
Cn	nb Tipo di	Sez.	Distanza	Angolo	N	М	Т					
Ν	r Elemento	N.ro	cm	0	Kg	Kgm	Kg					

SOLLECITAZIONI MURO 2 - Tabella Combinazioni: A1

	SOLLECITAZIONI MURO												
Cmb	Tipo di	Sez.	Distanza	Angolo	N	М	Т						
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg						
1	DENTE FONDAZ.	1	0	180,0	1246	-3	0						
		2	10	180,0	1114	88	2006						
1	MENS.FOND.MONTE	1	0	90,0	788	-3	-158						
		2	30	90,0	-1218	236	-817						
		3	60	90,0	-1218	-49	-1034						
		4	90	90,0	-1218	-355	-975						
		5	120	90,0	-1218	-620	-767						
		6	130	90,0	-1218	-692	-667						
1	MENS.FOND.VALLE	1	0	-90,0	0	0	0						
		2	30	-90,0	0	-273	-1797						
1	PARAMENTO	1	0	0,0	0	0	0						
		2	30	0,0	230	-1	0						
		3	60	0,0	471	20	175						
		4	90	0,0	723	109	464						
		5	120	0,0	986	299	866						
		6	150	0,0	1259	626	1382						
		7	180	0,0	1543	1122	2012						
		8	210	0,0	1837	1822	2755						

SOLLECT	ΓΔΖΙΩΝΙ ΜΙ	IRO 2.	. Tahalla	Combinazion	ni· Δ1
JULLEUI	I AZIONI WI	JRU Z :	· Iabella	CUIIIDIIIaziui	II. A I

	SOLLECITAZIONI MURO												
Cmb	Tipo di	Sez.	Distanza	Angolo	N	M	Т						
N.r	Elemento	N.ro	cm	٥	Kg	Kgm	Kg						
2	DENTE FONDAZ.	1	0	180,0	802	-5	0						
		2	10	180,0	679	102	2306						
2	MENS.FOND.MONTE	1	0	90,0	707	-2	-142						
		2	30	90,0	-1580	265	-1052						
		3	60	90,0	-1562	-133	-1551						
		4	90	90,0	-1544	-637	-1756						
		5	120	90,0	-1526	-1162	-1708						
		6	130	90,0	-1520	-1330	-1643						
2	MENS.FOND.VALLE	1	0	-90,0	0	0	0						
		2	30	-90,0	-18	-278	-1816						
2	PARAMENTO	1	0	0,0	0	0	0						
		2	30	0,0	221	2	18						
		3	60	0,0	453	31	209						
		4	90	0,0	694	132	511						
		5	120	0,0	946	339	924						
		6	150	0,0	1208	684	1447						
		7	180	0,0	1481	1201	2081						
		8	210	0,0	1764	1923	2827						

SOLLECITAZIONI MURO 2 - Tabella Combinazioni: Rare

	SOLLECITAZIONI MURO											
Cmb	Tipo di	Sez.	Distanza	Angolo	N	М	Т					
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg					
1	DENTE FONDAZ.	1	0	180,0	1040	-3	0					
		2	10	180,0	922	46	1105					
1	MENS.FOND.MONTE	1	0	90,0	595	-2	-119					
		2	30	90,0	-510	95	-639					
		3	60	90,0	-510	-138	-889					

SOLLECITAZIONI MURO 2 - Tabella Combinazioni: Rare

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	N	M	Т
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
		4	90	90,0	-510	-423	-990
		5	120	90,0	-510	-720	-967
		6	130	90,0	-510	-815	-933
1	MENS.FOND.VALLE	1	0	-90,0	0	0	0
		2	30	-90,0	0	-226	-1489
1	PARAMENTO	1	0	0,0	0	0	0
		2	30	0,0	230	-1	0
		3	60	0,0	471	13	122
		4	90	0,0	723	75	332
		5	120	0,0	986	211	630
		6	150	0,0	1259	447	1015
		7	180	0,0	1543	810	1487
		8	210	0,0	1837	1326	2047

SOLLECITAZIONI MURO 2 - Tabella Combinazioni: Freq.

	OCELEGITALION MONO 2 - Tubella Combinazioni. 1 req.												
	S	OLLI	ECITAZI	ONI	MURO								
Cmb	Tipo di	Sez.	Distanza	Angolo	Ν	М	T						
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg						
1	DENTE FONDAZ.	1	0	180,0	1040	-3	0						
		2	10	180,0	922	46	1105						
1	MENS.FOND.MONTE	1	0	90,0	595	-2	-119						
		2	30	90,0	-510	95	-639						
		3	60	90,0	-510	-138	-889						
		4	90	90,0	-510	-423	-990						
		5	120	90,0	-510	-720	-967						
		6	130	90,0	-510	-815	-933						
1	MENS.FOND.VALLE	1	0	-90,0	0	0	0						
		2	30	-90,0	0	-226	-1489						
1	PARAMENTO	1	0	0,0	0	0	0						
		2	30	0,0	230	-1	0						
		3	60	0,0	471	13	122						
		4	90	0,0	723	75	332						
		5	120	0,0	986	211	630						
		6	150	0,0	1259	447	1015						
		7	180	0,0	1543	810	1487						
		8	210	0,0	1837	1326	2047						

SOLLECITAZIONI MURO 2 - Tabella Combinazioni: Perm.

	SOLLECITAZIONI MURO												
Cmb	Tipo di	Sez.	Distanza	Angolo	N	М	Т						
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg						
1	DENTE FONDAZ.	1	0	180,0	1040	-3	0						
		2	10	180,0	922	46	1105						
1	MENS.FOND.MONTE	1	0	90,0	595	-2	-119						
		2	30	90,0	-510	95	-639						
		3	60	90,0	-510	-138	-889						
		4	90	90,0	-510	-423	-990						
		5	120	90,0	-510	-720	-967						
		6	130	90,0	-510	-815	-933						
1	MENS.FOND.VALLE	1	0	-90,0	0	0	0						
		2	30	-90,0	0	-226	-1489						

SOLLECITAZIONI MURO 2 - Tabella Combinazioni: Perm.

	SOLLECITAZIONI MURO												
Cmb	Tipo di	Sez.	Distanza	Angolo	N	M	Т						
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg						
1	PARAMENTO	1	0	0,0	0	0	0						
		2	30	0,0	230	-1	0						
		3	60	0,0	471	13	122						
		4	90	0,0	723	75	332						
		5	120	0,0	986	211	630						
		6	150	0,0	1259	447	1015						
		7	180	0,0	1543	810	1487						
		8	210	0,0	1837	1326	2047						

	VERIFICHE MURO 2																					
	VERIFICHE DI RESISTENZA MURO																					
Sez	EI	Dist	Н	В	Xg	Yg	Ang	Cmb	Nsdu	Msdu	A sin	A des	An.	An.	Nrdu	Mrdu	Cmb	Vsdu	Vrdu c	Vrdu s	A sta	Verif.
N.	em	cm	cm	cm	cm	cm	٥	Fle	Kg	Kgm	cmq	cmq	s °	d°	Kg	Kgm	tag	Kg	Kg	Kg	cmq/m	
1	1	0	30	100	55	240	0	1	0	0	0,0	0,0	3	0	0	0	1	0	0	0		OK
2	1	30	31	100	54	210	0	2	221	2	7,7	7,7	3	0	221	8119	2	18	13067	0		OK
3	1	60	33	100	54	180	0	2	453	31	7,7	7,7	3	0	453	8568	2	209	13499	0		OK
4	1	90	34	100	53	150	0	2	694	132	7,7	7,7	3	0	694	9022	2	511	13928	0		OK
5	1	120	36	100	52	120	0	2	946	339	7,7	7,7	3	0	946	9483	2	924	14352	0		OK
6	1	150	37	100	51	90	0	2	1208	684	7,7	15,4	3	0	1208	19436	2	1447	16797	0		OK
7	1	180	39	100	51	60	0	2	1481	1201	7,7	15,4	3	0	1481	20328	2	2081	17112	0		OK
8	1	210	40	100	50	30	0	2	1764	1923	7,7	23,1	3	0	1764	31144	2	2827	19943	0		OK

	VERIFICHE MURO 2																					
	VERIFICHE DI RESISTENZA MURO																					
Sez	EI	Dist	Н	В	Χg	Yg	Ang	Cmb	Nsdu	Msdu	A sin	A des	An.	An.	Nrdu	Mrdu	Cmb	Vsdu	Vrdu c	Vrdu s	A sta	Verif.
N.	em	cm	cm	cm	cm	cm	۰	Fle	Kg	Kgm	cmq	cmq	s °	d°	Kg	Kgm	tag	Kg	Kg	Kg	cmq/m	
1	4	0	30	100	0	15	-90	1	0	0	0,0	0,0	0	0	0	0	0	0	0	0		OK
2	4	30	30	100	30	15	-90	2	-18	-278	7,7	7,7	0	0	-18	6050	2	-1816	52476	0		OK

	VERIFICHE MURO 2																					
	VERIFICHE DI RESISTENZA MURO																					
Sez	EI	Dist	Н	В	Χg	Yg	Ang	Cmb	Nsdu	Msdu	A sin	A des	An.	An.	Nrdu	Mrdu	Cmb	Vsdu	Vrdu c	Vrdu s	A sta	Verif.
N.	em	cm	cm	cm	cm	cm	۰	Fle	Kg	Kgm	cmq	cmq	s °	ď°	Kg	Kgm	tag	Kg	Kg	Kg	cmq/m	
1	5	0	30	100	200	15	90	1	788	-3	0,0	0,0	0	0	0	0	1	-158	0	0		OK
2	5	30	30	100	170	15	90	2	-1580	265	7,7	7,7	0	0	-1580	7473	2	-1052	12630	0		OK
3	5	60	30	100	140	15	90	2	-1562	-133	7,7	7,7	0	0	-1562	7475	2	-1551	12630	0		OK
4	5	90	30	100	110	15	90	2	-1544	-637	7,7	7,7	0	0	-1544	7478	2	-1756	12630	0		OK
5	5	120	30	100	80	15	90	2	-1526	-1162	7,7	7,7	0	0	-1526	7480	2	-1708	12630	0		OK
6	5	130	30	100	70	15	90	2	-1520	-1330	7,7	7,7	0	0	-1520	7481	2	-1643	12630	0		OK

	VERIFICHE MURO 2																					
	VERIFICHE DI RESISTENZA MURO																					
Sez	EI	Dist	Η	В	Xg	Yg	Ang	Cmb	Nsdu	Msdu	A sin	A des	An.	An.	Nrdu	Mrdu	Cmb	Vsdu	Vrdu c	Vrdu s	A sta	Verif.
N.	em	cm	cm	cm	cm	cm	۰	Fle	Kg	Kgm	cmq	cmq	s °	d°	Kg	Kgm	tag	Kg	Kg	Kg	cmq/m	
1	6	0	30	100	185	-10	180	1	1246	-3	0,0	0,0	0	0	0	0	0	0	0	0		OK
2	6	10	30	100	185	0	180	2	679	102	2,5	2,5	0	0	679	2137	2	2306	119742	0		OK

VERIFICHE MURO 2

				FE	SSURA	ZIONE	MURI			
Muro	Ele	Tipo	Cmb	Sez.	N fes	M fes	Dist.	Wcalc	W Lim	Verifica
N.		Comb	fes	fes	Kg	Kgm	cm	mm	mm	
2	6	Freq	1	2	922	46	28	0,00	0,40	OK
		Perm	1	2	922	46	28	0,00	0,30	OK
2	5	Freq	1	6	-510	-815	19	0,07	0,40	OK
		Perm	1	6	-510	-815	19	0,07	0,30	OK
2	4	Freq	1	2	0	-226	20	0,02	0,40	OK
		Perm	1	2	0	-226	20	0,02	0,30	OK
2	1	Freq	1	7	1543	810	12	0,01	0,40	OK
		Perm	1	7	1543	810	12	0,01	0,30	OK

VERIFICHE MURO 2	
TENSIONI DI ESERCIZIO	MURI

Muro	Ele		Cmb	Sez.	Νσο	М ос	σc Κπ/2000	σc max	Cmb	Sez.	Nσf	Μσf	σf	of max	Verifica
N.		Comb	σc	σc	Kg	Kgm	Kg/cmq	Kg/cmq	σf	σt	Kg	Kgm	Kg/cmq	Kg/cmq	
2	6	rara	1	2	922	46	0,6	168,0	1	2	922	46	0	3600	OK
		perm	1	2	922	46	0,6	126,0							OK
2	5	rara	1	6	-510	-815	12,6	168,0	1	6	-510	-815	454	3600	OK
		perm	1	6	-510	-815	12,6	126,0							OK
2	4	rara	1	2	0	-226	3,5	168,0	1	2	0	-226	117	3600	OK
		perm	1	2	0	-226	3,5	126,0							OK
2	1	rara	1	8	1837	1326	8,1	168,0	1	8	1837	1326	134	3600	OK
		perm	1	8	1837	1326	8,1	126,0							OK

VERIFICA P	ORTANZA	MURO 2			
VERIFICHE POR	TANZA	FOND	AZIONE		
Numero dello strato corrispondente alla fondazion	e:				1
Combinazione di carico piu' gravosa:					1 A1
Scarico complessivo ortogonale al piano di posa:				11,	,95 t/m
Scarico complessivo parallelo al piano di posa:				2,	,29 t/m
Eccentricita' dello scarico lungo il piano di posa:				-0,	16 m
Larghezza della fondazione:				2,	,40 m
Lunghezza della fondazione:				1,	,00 m
Valore efficace della larghezza:					,07 m
Peso specifico omogeneizzato del terreno:				!	350 Kg/mc
Pressione verticale dovuta al peso del terrapieno				1,	,85 t/mq
VERIFICA IN C	:				
Fattori di capacita' portante: Ng =	3,1726	Nq =	4,7721	Nc =	12,3381
Fattori di forma: Sg =	1,3785	Sq =	1,3785	Sc =	1,7571
Fattori di profondita: Dg =	1,0000	Dq =	1,1878	Dc =	1,2376
Fattori inclinazione carico: Ig =	0,6094	lq =	0,7540	lc =	0,6888
Fattori inclinazione base: Bg =	1,0000	Bq =	1,0000	Bc =	1,0000
Fattori incl. piano campagna: Gg =	1,0000	Gq =	1,0000	Gc =	1,0000
Pressione media limite:				:	,77 t/mq
Sforzo normale limite:				•	,47 t/m
Coefficiente di sicurezza: (Sf.Norm.Lim/Scar.Com				4,	31
VERIFICA IN CON			NIE !	4 000	.0
Fattore di capacita' portante: Nco =	5,1416	•		1,000	
Fattore di profondito: Sco =	1,4145	•		1,000	
Fattore di profondita: Dco =	1,2316	•		1,000	
Fattore inclinazione carico: Ico = Fattore inclinazione base: Bco =	0,9287	•		1,000	
Fattore incl. piano campagna: Gco =	1,0000 1,0000	•		1,000 1,000	
Pressione media limite in condizioni non drenate:	1,0000	Gqo –		:	,13 t/mq
Sforzo normale limite in condizioni non drenate:				•	,00 t/m
Coefficiente di sicurezza in condizioni non drenate.	.			32	4,35
LA VERIFICA RI		DDISEATT	Δ		4,00
VERIFICHE	CEDIME		L D		
Combinazione di carico SLD piu' gravosa:	CLDIMI				2
Scarico complessivo ortogonale al piano di posa:				9,8	
Sforzo normale limite in condizioni drenate:				38,	
Coefficiente di sicurezza in condizioni drenate:				,	3,95
Sforzo normale limite in condizioni NON drenate:				54,8	•
Coefficiente di sicurezza in condizioni NON drena	te:			<u> </u>	5,59
LA VERIFICA RISULTA		SODDISF	ATTA	=	
·					

Tipo	Comb.	Sp.muro	Volume	DistMax	Ced.0/4	Ced.1/4	Ced.2/4	Ced.3/4
comb.	nro	mm	mc	m	mm	mm	mm	mm
SLD	2	0,2	0,000	4,08	0,5	0,3	0,1	0,0

COMPUTO MATERIALI MURO 2								
COMPUTO DEI MATERIALI								
Volume di calcestruzzo per metro di muro:	1,365	mc/m						
Peso di acciaio per metro di muro:	90,2	Kg/m						
Superficie casseforme per metro di muro:	5,0	mq/m						
Sviluppo complessivo del muro:	1,00	m						
Volume di calcestruzzo complessivo per il muro:	1,365	mc						
Peso di acciaio complessivo per il muro:	90,2	Kg						
Superficie casseforme complessiva per il muro:	5,0	mq						
Rapporto peso acciaio / volume calcestruzzo del muro:	66,1	Kg/mc						
	•	. –						

COMPUTO MATERIALI MURO 2								
DISTINTA DELLE ARMATURE								
- Diametro φ	8	mm						
Sviluppo complessivo barre per metro di muro:	36,40	m/m						
Peso totale barre per metro di muro:	14,4	Kg/m						
- Diametro φ	14	mm						
Sviluppo complessivo barre per metro di muro:	62,76	m/m						
Peso totale barre per metro di muro:	75,9	Kg/m						

COMUNE DI	RAMACCA
PROVINCIA	DI CATANIA

TABULATI DI CALCOLO

OGGETTO:	CALCOLO MURO 3 IN C.A.
COMMITTENTE:	COMUNE DI RAMACCA

RELAZIONE DI CALCOLO

Sono illustrati con la presente i risultati dei calcoli che riguardano il calcolo delle spinte, le verifiche di stabilità e di resistenza di muri di sostegno.

NORMATIVA DI RIFERIMENTI

I calcoli sono condotti nel pieno rispetto della normativa vigente e, in particolare, la normativa cui viene fatto riferimento nelle fasi di calcolo, verifica e progettazione è costituita dalle *Norme Tecniche per le Costruzioni*, emanate con il D.M. 17/01/2018 pubblicato nel suppl. 8 G.U. 42 del 20/02/2018, nonché la Circolare del Ministero Infrastrutture e Trasporti del 21 Gennaio 2019, n. 7 "*Istruzioni per l'applicazione dell'aggiornamento delle norme tecniche per le costruzioni*".

CALCOLO DELLE SPINTE

Si suppone valida l'ipotesi in base alla quale la spinta attiva si ingenera in seguito al movimento del manufatto nella direzione della spinta agente. Le ipotesi di base per il calcolo della spinta sono le seguenti, le medesime adottate dal metodo di calcolo secondo *Coulomb*, con l'estensione di *Muller-Breslau* e *Mononobe-Okabe*:

- In fase di spinta attiva si crea all'interno del terrapieno un cuneo di spinta, che si distacca dal terreno indisturbato tramite linee di frattura rettilinee, lungo le quali il cuneo scorre generando tensioni tangenziali dovute all'attrito.
- Sul cuneo di spinta agiscono le seguenti forze: peso proprio del terreno, sovraccarichi applicati sull'estradosso del terrapieno, spinte normali alle superfici di scorrimento del cuneo (da una parte contro il paramento e dall'altra contro la porzione di terreno indisturbato), forze di attrito che si innescano lungo le superfici del cuneo e che si oppongono allo scorrimento.
- In condizioni sismiche, al peso proprio del cuneo va aggiunta una componente orizzontale, ed eventualmente anche una verticale, pari al peso complessivo moltiplicato per il prodotto dei coefficienti sismici.
- Il fatto che il muro ha spostamenti significativi fa in modo che l'attrito che si genera è pari al valore massimo possibile, sia in condizioni di spinta attiva che di spinta passiva, quindi le risultanti delle reazioni sulle pareti del cuneo risultano inclinate di una angolo f rispetto alla normale alla superficie di scorrimento.

Il programma *C.D.W. Win*, pur adottando le stesse ipotesi, piuttosto che utilizzare la formula di *Coulomb* in forma chiusa, applica la procedura originaria derivante dall'equilibrio delle forze agenti sul cuneo di spinta, cercando il valore di massimo della spinta per tentativi successivi su tutti i possibili cunei di spinta. Così facendo si possono aggiungere alle ipotesi già indicate le seguenti generalizzazioni, che invece devono essere trascurate utilizzando i metodi classici:

- Il terreno spingente può essere costituito da diversi strati, separati da superfici di forma generica, con caratteristiche geotecniche differenti.
- Il profilo dell'estradosso del terrapieno spingente può avere una forma generica qualsiasi, purché coerente con le caratteristiche del terreno.
- I sovraccarichi agenti sul terrapieno possono avere una distribuzione assolutamente libera.
- Può essere tenuta in conto la coesione interna del terreno e la forza di adesione tra terreno e muro.
- Si può calcolare la spinta di un muro con mensola aerea stabilizzante a monte, al di sotto della quale si crea un vuoto nel terreno.
- È possibile conoscere l'esatto andamento delle pressioni agenti sul profilo del muro anche nei casi sopra detti, in cui tale andamento non è lineare, ma la cui distribuzione incide sul calcolo delle sollecitazioni interne.
- Si può supporre anche l'esistenza una linea di rottura del cuneo interna, che va dal vertice estremo della mensola di

fondazione a monte fino a intersecare il paramento, inclinata di un certo angolo legato a quello di attrito interno del terreno stesso. Si può quindi conoscere l'esatta forma del cuneo di spinta, per cui le forze in gioco variano in quanto solo una parte di esso è a contatto con il paramento. Il peso proprio del terreno portato sarà solo quello della parte di terrapieno che realmente rimarrà solidale con la fondazione e non risulterà interessato da scorrimenti, quindi in generale un triangolo. Ciò fa si che il peso gravante sulla fondazione può risultare notevolmente inferiore a quello ricavato con i metodi usuali, dal momento che una parte è già stata conteggiata nel cuneo di spinta.

Per quanto riguarda la spinta passiva, quella del terrapieno a valle, le uniche differenza rispetto a quanto detto consistono nel fatto che le forze di attrito e di coesione tra le superfici di scorrimento del cuneo hanno la direzione opposta che nel caso di spinta attiva, nel senso che si oppongono a un moto di espulsione verso l'alto del cuneo, e la procedura iterativa va alla ricerca di un valore minimo piuttosto che un massimo.

Nei casi di fondazione su pali o muri tirantati si può ritenere più giusto adottare un tipo di spinta a riposo, che considera il cuneo di terreno non ancora formato e spostamenti dell'opera nulli o minimi. Tale spinta è in ogni caso superiore a quella attiva e la sua entità si dovrebbe basare su considerazioni meno semplicistiche. Il programma opera prendendo come riferimento una costante di spinta pari a:

$$K_o = 1 - 0.9 \times sen \phi$$

essendo ϕ l'angolo di attrito interno del terreno, formula che si trova diffusamente in letteratura. Se tale deve essere la costante di spinta per un terreno uniforme, ad estradosso rettilineo orizzontale e privo di sovraccarichi e di azione sismica, viene ricavato un fattore di riduzione dell'angolo di attrito interno del terreno, tale che utilizzando questo angolo ridotto e la consueta procedura per il calcolo della spinta attiva, la costante fittizia di spinta attiva corrisponda alla costante a riposo della formula sopra riportata.

Una volta ricavato questo fattore riduttivo, il programma procede al calcolo con le procedure standard, mettendo in gioco le altre variabili, quali la sagomatura dell'estradosso e degli strati, la presenza di sovraccarichi variamente distribuiti e la condizione sismica. La giustificazione di ciò risiede nella considerazione in base alla quale in condizioni di spinta a riposo, gli spostamenti interni al terreno sono ridotti rispetto alla spinta attiva, quindi l'attrito che si mobilita è una parte di quello massimo possibile, e di conseguenza la spinta risultante cresce.

In base a queste considerazioni di ordine generale, il programma opera come segue:

- Si definisce la geometria di tutti i vari cunei di spinta di tentativo, facendo variare l'angolo di scorrimento dalla parte di monte da 0 fino al valore limite 90 φ. Quindi in caso di terreno multistrato, la superficie di scorrimento sarà costituita da una spezzata con inclinazioni differenti da strato a strato. Ciò assicura valori di spinta maggiori rispetto a una eventuale linea di scorrimento unica rettilinea. L'angolo di scorrimento interno, quello dalla parte del paramento, qualora si attivi la procedura "Coulomb estes" è posto pari a 3/4 dell'angolo utilizzato a monte. Tale percentuale è quella che massimizza il valore della spinta. È possibile però attivare la procedura "Coulomb classico", in cui tale superficie si mantiene verticale, ma utilizzando in ogni caso l'angolo di attrito tra terreno e muro.
- Si calcola l'entità complessiva dei sovraccarichi agenti sul terrapieno che ricadono nella porzione di estradosso compresa nel cuneo di spinta.
- Si calcola il peso proprio del cuneo di spinta e le eventuali componenti sismiche orizzontali e verticali dovute al peso proprio ed eventualmente anche ai sovraccarichi agenti sull'estradosso.
- Si calcolano le eventuali azioni tangenziali sulle superfici interne dovute alla coesione interna e all'adesione tra terreno e muro.
- In base al rispetto dell'equilibrio alla traslazione verticale e orizzontale, nota l'inclinazione delle spinte sulle superfici interne (pari all'angolo di attrito), sviluppato in base a tutte le forze agenti sul concio, si ricavano le forze incognite, cioè le spinte agenti sul paramento e sulla superficie di scorrimento interna del cuneo.
- Si ripete la procedura per tutti i cunei di tentativo, ottenuti al variare dell'angolo alla base. Il valore massimo (minimo nel caso di spinta passiva) tra tutti quelli calcolati corrisponde alla spinta del terrapieno.

COMBINAZIONI DI CARICO

Il programma opera in ottemperanza alle norme attuali per quanto riguarda le combinazioni di carico da usare per i vari tipi di verifiche. In particolare viene rispettato quanto segue.

- Le verifiche di resistenza del paramento e della fondazione SLU vengono effettuate in base alle combinazioni di carico del

tipo A1, riportate nei tabulati di stampa.

- Le verifiche geotecniche di portanza e scorrimento vengono effettuate in base alle combinazioni di tipo A1 e A2, in caso di approccio del tipo 1, oppure utilizzando le sole combinazioni del tipo A1, in caso di approccio 2.
- Il sisma verticale viene considerato alternativamente in direzione verso l'alto e verso il basso. La spinta riportata nei tabulati si riferisce al caso in cui la spinta risulta maggiore.
- Le verifiche al ribaltamento vengono svolte utilizzando i coefficienti riportati in norma nella tabella 6.2.I secondo le modalità previste dalla norma stessa, annullando quindi i contributi delle singole azioni che abbiano un effetto stabilizzante.
- I coefficienti delle combinazioni di carico riportati nei tabulati di stampa si riferiscono esclusivamente ai sovraccarichi applicati sul terrapieno e sul muro stesso. Il peso proprio strutturale del muro e quello del terreno di spinta vengono trattai in base a quanto prevede la norma per i pesi propri strutturali e non strutturali, a prescindere dai coefficienti utilizzati per le varie combinazioni.

• VERIFICA AL RIBALTAMENTO

La verifica al ribaltamento si effettua in sostanza come equilibrio alla rotazione di un corpo rigido sollecitato da un sistema di forze, ciascuna delle quali definita da un'intensità, una direzione e un punto di applicazione.

Non va eseguita se la fondazione è su pali. Le forze che vengono prese in conto sono le seguenti:

- Spinta attiva complessiva del terrapieno a monte.
- Spinta passiva complessiva del terrapieno a valle (da considerare nella quota parte indicata nei dati generali).
- Spinta idrostatica dell'acqua della falda a monte, a valle e sul fondo.
- Forze esplicite applicate sul muro in testa, sulla mensola area a valle e sulla mensola di fondazione a valle.
- Forze massime attivabili nei tiranti per moto di ribaltamento.
- Forze di pretensione dei tiranti.
- Peso proprio del muro composto con l'eventuale componente sismica.
- Peso proprio della parte di terrapieno solidale con il muro composto con l'eventuale componente sismica.

Di ciascuna di queste forze verrà calcolato il momento, ribaltante o stabilizzante, rispetto ad un punto che è quello più in basso dell'estremità esterna della mensola di fondazione a valle. In presenza di dente di fondazione disposto a valle, il punto di equilibrio è quello più esterno al di sotto del dente.

Ai fini del calcolo del momento stabilizzante o ribaltante, esso per ciascuna forza è ottenuto dal prodotto dell'intensità della forza per la distanza minima tra la linea d'azione della forza e il punto di rotazione. Qualora tale singolo momento abbia un effetto ribaltante verrà conteggiato nel momento ribaltante complessivo, qualora invece abbia un effetto stabilizzante farà parte del momento stabilizzante complessivo. Può quindi accadere che il momento ribaltante sia pari a 0, e ciò fisicamente significa che incrementando qualunque forza, ma mantenendone la linea d'azione, il muro non andrà mai in ribaltamento.

Il coefficiente di sicurezza al ribaltamento è dato dal rapporto tra il momento stabilizzante complessivo e quello ribaltante. La verifica viene effettuata per tutte le combinazioni di carico previste.

VERIFICA ALLO SCORRIMENTO

La verifica allo scorrimento è effettuata come equilibrio alla traslazione di un corpo rigido, sollecitato dalle stesse forze prese in esame nel caso della verifica a ribaltamento, tranne per il fatto che per i tiranti il sistema di forze è quello che si innesca per moto di traslazione. Ciascuna forza ha una componente parallela al piano di scorrimento del muro, che a seconda della direzione ha un effetto stabilizzante o instabilizzante, e una componente ad esso normale che, se di compressione, genera una reazione di attrito che si oppone allo scorrimento. Una ulteriore parte dell'azione stabilizzante è costituita dall'eventuale forza di adesione che si suscita tra il terreno e la fondazione.

In presenza di dente di fondazione, la linea di scorrimento non è più quella di base della fondazione, ma è una linea che attraversa il terreno sotto la fondazione, e che congiunge il vertice basso interno del dente con l'estremo della mensola di fondazione opposta. In

tal caso quindi l'attrito e l'adesione sono quelli interni del terreno. In questo caso viene conteggiato pure il peso della parte di terreno sottostante alla fondazione che nel moto di scorrimento rimane solidale con il muro.

Il coefficiente di sicurezza allo scorrimento è dato dal rapporto tra l'azione stabilizzante complessiva e quella instabilizzante. La verifica viene effettuata per tutte le combinazioni di carico previste.

• CAPACITÀ PORTANTE DEL TERRENO DI FONDAZIONE

Nel caso di fondazione diretta, si assume quale carico limite che provoca la rottura del terreno di fondazione quello espresso dalla formula di *Brinch-Hansen*. Tale formula fornisce il valore della pressione media limite sulla superficie d'impronta della fondazione, eventualmente parzializzata in base all'eccentricità. Esiste un tipo di pressione limite a lungo termine, in condizioni drenate, e un altro a breve termine in eventuali condizioni non drenate.

Le espressioni complete utilizzate sono le seguenti:

- In condizioni drenate:

$$Q_{\text{lim}} = \frac{1}{2} \Gamma \cdot B \cdot N_g \cdot i_g \cdot d_g \cdot b_g \cdot s_g \cdot g_g + C \cdot N_c \cdot i_c \cdot d_c \cdot b_c \cdot s_c \cdot g_c + Q \cdot N_q \cdot i_q \cdot d_q \cdot b_q \cdot s_q \cdot g_q$$

- In condizioni non drenate:

$$Q_{\text{lim}} = C_u \cdot N_{c'} \cdot i_{c'} \cdot d_{c'} \cdot b_{c'} \cdot s_{c'} \cdot g_{c'} + Q \cdot i_{q'} \cdot d_{q'} \cdot b_{q'} \cdot s_{q'} \cdot g_{q'}$$

Fattori di portanza, ϕ in gradi:

$$N_q = \tan^2(45^\circ + \frac{\phi}{2}) \cdot e^{\pi \cdot \tan \phi}$$

$$N_c = (N_q - 1) \cdot \cot \phi$$

$$N_{c'} = 2 + \pi$$

$$N_g = 2 \cdot (N_q + 1) \cdot \tan \phi$$

Fattori di forma:

$$\begin{split} s_q &= 1 + 0.1 \cdot \frac{B}{L} \cdot \frac{1 + \sec \phi}{1 - \sec \phi} \\ s_{q'} &= 1 \\ s_c &= 1 + 0.2 \cdot \frac{B}{L} \cdot \frac{1 + \sec \phi}{1 - \sec \phi} \\ s_{c'} &= 1 + 0.2 \cdot \frac{B}{L} \\ s_g &= s_q \end{split}$$

Fattori di profondità, K espresso in radianti:

$$\begin{aligned} d_q &= 1 + 2 \cdot \tan \phi \cdot (1 - \sin \phi)^2 \cdot K \\ d_{q'} &= 1 \\ d_c &= d_q - \frac{1 - d_q}{N_c \cdot \tan \phi} \\ d_g &= 1 \end{aligned}$$

dove
$$K = \frac{D}{B}$$
 se $\frac{D}{B} \le 1$ o $K = arc \tan \frac{D}{B}$ se $\frac{D}{B} > 1$

Fattori di inclinazione dei carichi:

$$\begin{split} i_q &= \left[1 - \frac{H}{V + B \cdot L \cdot C_a \cdot \cot \phi}\right]^m \\ i_{q'} &= 1 \\ i_c &= i_q - \frac{1 - i_q}{N_c \cdot \tan \phi} \\ i_{c'} &= 1 - \frac{m \cdot H}{B \cdot L \cdot C_u \cdot N_c} \\ i_g &= \left[1 - \frac{H}{V + B \cdot L \cdot C_a \cdot \cot \phi}\right]^{m+1} \\ &= \cot m = \frac{2 + \frac{B}{L}}{1 + \frac{B}{L}} \end{split}$$

Fattori di inclinazione del piano di posa, η in radianti:

$$\begin{aligned} b_q &= (1 - \eta \cdot \tan \phi)^2 \\ b_{q'} &= 1 \\ b_c &= b_q - \frac{1 - b_q}{N_c \cdot \tan \phi} \\ b_{c'} &= 1 - 2 \cdot \frac{\eta}{N_{c'}} \\ b_g &= g_q \end{aligned}$$

Fattori di inclinazione del terreno, β in radianti:

$$g_q = (1 - \tan \beta)^2$$

$$g_{q'} = 1$$

$$g_c = 1 - 2 \cdot \frac{\beta}{N_{c'}}$$

$$g_g = g_q$$

essendo:

- Γ = peso specifico del terreno di fondazione

- Q = sovraccarico verticale agente ai bordi della fondazione

- e = eccentricità della risultante M/N in valore assoluto

- B = $B_t - 2 \times e$, larghezza della fondazione parzializzata

- B_t = larghezza totale della fondazione

- C = coesione del terreno di fondazione

- D = profondità del piano di posa

- L = sviluppo della fondazione

- H = componente del carico parallela alla fondazione

- V = componente del carico ortogonale alla fondazione

- Cu = coesione non drenata del terreno di fondazione

- Ca = adesione alla base tra terreno e muro

- η = angolo di inclinazione del piano di posa

- β = inclinazione terrapieno a valle, se verso il basso (quindi ≥ 0)

• MURI IN CALCESTRUZZO A MENSOLA

Sulle sezioni del paramento e delle varie mensole, aeree e di fondazione, si effettua il progetto delle armature e le verifiche a presso-flessione e taglio in corrispondenza di tutte le sezioni singolari (punti di attacco e di spigolo) e in tutte quelle intermedie ad un passo pari a quello imposto nei dati generali. Vengono applicate le formule classiche relative alle sezioni rettangolari in cemento armato, con il progetto dell'armatura necessaria.

CALCOLO DEI CEDIMENTI DEL TERRAPIENO A MONTE

Per il calcolo dei cedimenti permanenti causati dall'azione sismica, il programma opera come segue. Innanzitutto vengono calcolate le spinte per una ulteriore modalità di azione sismica, cioè quella relativa allo stato limite di danno (SLD). A seguito del calcolo di tali spinte, per le sole combinazioni sismiche, si calcola lo spostamento residuo del muro per traslazione rigida, ricavato in base alla seguente formulazione di *Richards & Elms*:

$$d = \frac{0.087 \times V^2}{Acc \times \left(\frac{A_{\lim}}{Acc}\right)^{-4}}$$

in cui si ha:

d = spostamento sismico residuo

 $V = 0.16 \times Acc \times g \times S \times Tc$

Acc = accelerazione sismica adimensionale SLD

g = 9.80665 = accelerazione di gravità

S = coefficiente di amplificazione stratigrafico

Tc = coefficiente di amplificazione topografico

Alim = accelerazione oltre la quale si innesca lo scorrimento della fondazione per superamento del limite dell'attrito

Una volta ricavato, per ciascuna combinazione di carico, tale spostamento orizzontale, si calcola il volume del terreno interessato a tale spostamento, pari allo spostamento stesso per l'altezza complessiva del muro, comprensiva dello spessore della fondazione. Il cedimento verticale del terreno a ridosso del muro viene quindi calcolato con la seguente formula (*Bowles* - metodo di *Caspe*):

$$Sv = 4 Vol/D$$

essendo Vol il volume di terreno interessato dallo spostamento del muro e D la distanza in orizzontale dal muro alla quale si annullano i cedimenti. Quest'ultima è assimilata alla dimensione orizzontale massima del cuneo di rottura del terreno spingente. Infine i cedimenti lungo il ratto interessato sono calcolati con legge decrescente col quadrato della distanza X dal paramento:

$$Sx = Sv * (X/D)^2$$

T SPINTE DEL TERRAPIENO

Cmb n. : Numero della combinazione di carico

Fx tot : Componente orizzontale della spinta complessiva del terrapieno
Fy tot : Componente verticale della spinta complessiva del terrapieno

H tot : Altezza del punto di applicazione della risultante della spinta del terrapieno
X tot : Ascissa del punto di applicazione della risultante della spinta del terrapieno
Fx tp : Componente orizzontale della spinta dovuta al peso proprio del terreno

portato dalla mensola di fondazione

Fy tp : Componente verticale della spinta dovuta al peso proprio del terreno

portato dalla mensola di fondazione

Footer Utente. Esempio: Studio Tecnico xxx

H tp : Altezza del punto di applicazione della risultante della spinta dovuta al peso

proprio del terreno portato dalla mensola di fondazione

X tp : Ascissa del punto di applicazione della risultante della spinta dovuta al

peso proprio del terreno portato dalla mensola di fondazione

Fx esp : Componente orizzontale della spinta aggiuntiva esplicita Fy esp : Componente verticale della spinta aggiuntiva esplicita

H esp : Altezza del punto di applicazione della risultante della spinta aggiuntiva

esplicita

X esp : Ascissa del punto di applicazione della risultante della spinta aggiuntiva

esplicita

Fx w : Componente orizzontale della spinta dell'acqua Fy w : Componente verticale della spinta dell'acqua

H w : Altezza del punto di applicazione della risultante della spinta dell'acqua
X w : Ascissa del punto di applicazione della risultante della spinta dell'acqua

K sta : Costante di spinta statica K sis : Costante di spinta sismica

C sif : Coefficiente di sicurezza al sifonamento (dato assente se non è stata

eseguita la verifica)

N.B.: Ascisse e altezze si intendono misurate a partire dal punto più a valle della fondazione del muro, quello attorno a cui avviene l'ipotetica rotazione del ribaltamento.

Tutte le spinte orizzontali si intendono positive se rivolte verso il paramento, quelle verticali se rivolte verso il basso.

THE CEDIMENTI VERTICALI TERRENO DI MONTE

Tipo Comb : Tipo di combinazione di carico

Comb n. : Numero della combinazione associata al tipo di combinazione

Sp.muro : Spostamento rigido residuo del muro per traslazione

Volume : Volume del terreno deformato dallo spostamento rigido

Dist.max : Distanza massima orizzontale dal muro alla quale si annullano i

cedimenti

Ced.0/4 : Cedimento verticale a ridosso del muro

Ced.1/4 : Cedimento verticale ad 1/4 della distanza massima

Ced.2/4 : Cedimento verticale a 2/4 della distanza massima

Ced.3/4 : Cedimento verticale a 3/4 della distanza massima

CALCOLO DEI CEDIMENTI DEL TERRAPIENO A MONTE

Per il calcolo dei cedimenti permanenti causati dall'azione sismica, il programma opera come segue. Innanzitutto vengono calcolate le spinte per una ulteriore modalità di azione sismica, cioè quella relativa allo stato limite di danno (SLD). A seguito del calcolo di tali spinte, per le sole combinazioni sismiche, si calcola lo spostamento residuo del muro per traslazione rigida, ricavato in base alla seguente formulazione di *Richards & Elms*:

$$d = \frac{0.087 \times V^2}{Acc \times \left(\frac{A_{\lim}}{Acc}\right)^{-4}}$$

in cui si ha:

d = spostamento sismico residuo

 $V = 0.16 \times Acc \times g \times S \times Tc$

Acc = accelerazione sismica adimensionale SLD

g = 9.80665 = accelerazione di gravità

S = coefficiente di amplificazione stratigrafico

Tc = coefficiente di amplificazione topografico

Alim = accelerazione oltre la quale si innesca lo scorrimento della fondazione per superamento del limite dell'attrito

Una volta ricavato, per ciascuna combinazione di carico, tale spostamento orizzontale, si calcola il volume del terreno interessato a tale spostamento, pari allo spostamento stesso per l'altezza complessiva del muro, comprensiva dello spessore della fondazione. Il cedimento verticale del terreno a ridosso del muro viene quindi calcolato con la seguente formula (*Bowles* - metodo di *Caspe*):

$$Sv = 4 Vol/D$$

essendo Vol il volume di terreno interessato dallo spostamento del muro e D la distanza in orizzontale dal muro alla quale si annullano i cedimenti. Quest'ultima è assimilata alla dimensione orizzontale massima del cuneo di rottura del terreno spingente. Infine i cedimenti lungo il ratto interessato sono calcolati con legge decrescente col quadrato della distanza X dal paramento:

$$Sx = Sv * (X/D)^2$$

• LEGENDA DELLE ABBREVIAZIONI

CARATTERISTICHE DELLA SOLLECITAZIONE NEL MURO

Distanza : Distanza della sezione dalla sezione iniziale del tipo di

elemento (estremo libero)

Angolo : Angolo di inclinazione della sezione rispetto al piano

orizzontale

N : Sforzo normale, positivo se di compressione

M : Momento flettente, positivo se antiorario (ribaltante)

T : Sforzo di taglio, positivo se diretto verso sinistra (lembo più a valle)

N.B.: Le caratteristiche N, M e T si intendono riferite ad 1 metro di sezione di muro, o a tutta la sezione nel caso di contrafforti o cordoli.

VERIFICHE PER IL MURO IN C.A.

Sez. N. : Numero della sezione da verificare

Ele : *Tipo di elemento verificato*:

1 = PARAMENTO

2 = MENSOLA AEREA A VALLE 3 = MENSOLA AEREA A MONTE

4 = MENSOLA DI FONDAZIONE A VALLE 5 = MENSOLA DI FONDAZIONE A MONTE

6 = DENTE DI FONDAZIONE

7 = SEZIONE TRASVERSALE PARAMENTO 8 = SEZIONE TRASVERSALE FONDAZIONE

9 = CONTRAFFORTE 10= CORDOLO

Dist : Distanza della sezione dalla sezione iniziale del tipo di elemento (mezzeria della campata per

sezioni verticali del paramento e cordoli)

H : Altezza della sezione

B : Larghezza della sezione (nel caso di contrafforti con sezione a T, tale dato è relativo alla larghezza

dell'anima della sezione, al netto quindi dei tratti di paramento collaborante)

Xg : Ascissa del baricentro della sezione

Yg : Altezza del baricentro della sezione. Ascissa e altezza si intendono misurate a partire dal punto più a

valle della fondazione del muro, quello attorno a cui avviene l'ipotetica rotazione del ribaltamento

Ang : Angolo di inclinazione della sezione rispetto al piano orizzontale

Cmb fle : Combinazione di carico più gravosa a presso-flessione. Un valore maggiore di 100 indica una

combinazione del tipo A2

Nsdu : Sforzo normale di calcolo relativo alla combinazione più gravosa a presso-flessione, agente su 1

metro di muro o su tutta la sezione se si tratta di contrafforti o cordoli. Positivo se di compressione

Msdu : Momento flettente di calcolo relativo alla combinazione più gravosa a presso-flessione, agente su l

metro di muro o su tutta la sezione se si tratta di contrafforti o cordoli. Positivo se antiorario

(ribaltante)

A sin : Area di armatura nel lembo di sinistra (quello più a valle) della sezione, relativa a 1 metro di muro o

a tutta la sezione se si tratta di contrafforti o cordoli (nel caso di contrafforti con sezione a T, tale area va distribuita su tutta la larghezza delle ali e non è cumulabile all'area dei corrispondenti ferri

verticali per la sezione orizzontale del paramento in quanto in essa già compresa)

A des : Area di armatura nel lembo di destra (quello più a monte) della sezione, relativa a 1 metro di muro o

a tutta la sezione se si tratta di contrafforti o cordoli

An. s : Angolo della armatura di sinistra rispetto alla normale della sezione. L'angolo si intende positivo se

l'armatura va a divergere all'aumentare della distanza

An. d : Angolo della armatura di destra rispetto alla normale della sezione. L'angolo si intende positivo se

l'armatura va a divergere all'aumentare della distanza

Nrdu : Sforzo normale associato al momento resistente ultimo sulla sezione, agente su 1 metro di muro o su

tutta la sezione se si tratta di contrafforti o cordoli. Positivo se di compressione

Mrdu : Momento flettente resistente ultimo sulla sezione, agente su 1 metro di muro o su tutta la sezione se si

tratta di contrafforti o cordoli

Cmb tag : Combinazione di carico più gravosa a taglio. Un valore maggiore di 100 indica una combinazione

del tipo A2

Vsdu : Sforzo di taglio di calcolo relativo alla combinazione più gravosa a taglio, agente su 1 metro di muro

o su tutta la sezione se si tratta di contrafforti o cordoli. Positivo se diretto verso sinistra (lembo più a

valle)

Vrdu c : Taglio resistente ultimo di calcolo per il meccanismo resistente affidato al calcestruzzo

Vrdu s : Taglio resistente ultimo di calcolo per il meccanismo resistente affidato alle staffe

A sta : Area di staffe necessaria nel concio precedente la sezione

Verif. : Indicazione soddisfacimento delle verifiche di resistenza

VERIFICHE FESSURAZIONE MURI

Muro N. : Numero del muro

Ele : *Tipo di elemento verificato*

Tipo Comb : Tipo di combinazione di carico

Cmb fes : Combinazione di carico più gravosa a fessurazione, tra quelle del tipo

considerato

Sez. fes : Sezione dell'elemento in cui risulta più gravosa la verifica a

fessurazione

N fes : Sforzo normale di calcolo in corrispondenza della sezione considerata

M fes : Momento flettente di calcolo in corrispondenza della sezione

considerata

Dist. : Distanza media tra le fessure in condizioni di esercizio

W ese : Ampiezza media delle fessure in condizioni di esercizio

W max : Ampiezza massima limite tra le fessure

Verifica : Indicazione soddisfacimento delle verifiche

VERIFICHE TENSIONI DI ESERCIZIO MURI

Muro N. : Numero del muro

Ele : Tipo di elemento verificato

Tipo Comb : Tipo di combinazione di carico

Cmb åc : Combinazione di carico più gravosa per le tensioni nel calcestruzzo, tra

quelle del tipo considerato

Sez. σ_c : Sezione del palo nella quale la verifica della tensione nel calcestruzzo è

più gravosa

 $N \sigma_c$: Sforzo normale di calcolo in corrispondenza della sezione considerata

M σ_c : Momento flettente di calcolo in corrispondenza della sezione

considerata

σ_c : Tensione massima nel calcestruzzo in condizioni di esercizio

 σ_c max : Tensione massima limite nel calcestruzzo

Cmb σ_f : Combinazione di carico più gravosa per le tensioni nell'acciaio, tra

quelle del tipo considerato

Sez. σ_f : Sezione del palo nella quale la verifica della tensione nell'acciaio è più

gravosa

 $N \sigma_f$: Sforzo normale di calcolo in corrispondenza della sezione considerata

M σ_f : Momento flettente di calcolo in corrispondenza della sezione

considerata

σ_f : Tensione massima nell'acciaio in condizioni di esercizio

σ_f max : Tensione massima limite nell'acciaio

Verifica : Indicazione soddisfacimento delle verifiche

CEDIMENTI VERTICALI TERRENO DI MONTE

Tipo Comb : Tipo di combinazione di carico

Comb n. : Numero della combinazione associata al tipo di combinazione

Sp.muro : Spostamento rigido residuo del muro per traslazione

Volume : Volume del terreno deformato dallo spostamento rigido

Dist.max : Distanza massima orizzontale dal muro alla quale si annullano i

cedimenti

Ced.0/4 : Cedimento verticale a ridosso del muro

Ced.1/4 : Cedimento verticale ad 1/4 della distanza massima

Ced.2/4 : Cedimento verticale a 2/4 della distanza massima

Ced.3/4 : Cedimento verticale a 3/4 della distanza massima

DATI DI CALCOLO					
	PARAMETR	SISMICI			
Vita Nominale (Anni)	50	Classe d' Uso		SECONDA	
Longitudine Est (Grd)	14,69473	Latitudine Nord	(Grd)	37,38427	
Categoria Suolo	В	Coeff. Condiz. To	ppogr.	1,00000	
Probabilita' Pvr (SLV)	0,10000	Periodo Ritorno A		475,00000	
Accelerazione Ag/g (SLV)	0,17600	Fattore Stratigraf		1,20000	
Probabilita' Pvr (SLD)	0,63000	Periodo Ritorno A		50,00000	
Accelerazione Ag/g (SLD)	0,05200			·	
-	TEORIE D	CALCOLO		-	
Verifiche	e effettuate con il m	etodo degli stati lim	nite ultimi		
Portanza	a dei pali calcolata	con la teoria di Norr	me A.G.I.		
Portanza terrend	di fondazione calc	colata con la teoria	di Brinch-Ha	insen	
	CRITERI D	I CALCOLO			
		dovuta ai sovraccar			
		dovuta alle forze a	• •		
		zzante delle forze a	applicate al r		
Rapporto tra il taglio medio e quel	lo nel palo piu' cari	cato:		1,00	
Coeff. maggiorativo diametro perfe	orazione per microj	pali		1,20	
Percentuale spinta a valle per la verifica a scorrimento 50					
Percentuale spinta a valle per la v			0		
Percentuale spinta a valle per la v	е		100		
Percentuale spinta a valle per calc	colo sollecitazioni			100	
COEFFIC	IENTI PAR	ZIALI GEO	TECNIC	A	
		TABELLA	M1	TABELLA M2	
Tangente Resist. Taglio		1	1,00	1,25	
Peso Specifico		1	,00	1,00	
Coesione Efficace (c'k)		1	,00	1,25	
Resist. a taglio NON drenata (cuk)		,00	1,40	
Tipo Approccio		Combinaz	zione Unica:	(A1+M1+R3)	
Tipo di fondazione	Tipo di fondazione Superficiale				
COEFFICIENTI R3	R3 STATICI	R3 SISI	MICI	R3 PALI	
Capacita' Portante	1,4	0	1,20		
Scorrimento	1,1	0	1,00		
Ribaltamento	1,1	1,00			
Resist. Terreno Valle	1,4	0	1,20		
Resist. alla Base				1,35	
Resist. Lat. a Compr.				1,35	
Resist. Lat. a Traz.				1,25	
Carichi Trasversali				1,30	

CARATTERISTICHE MATERIALI					
CAR	CARATTERISTICHE DEI MATERIALI				
CARA	TTERISTICHE	C. A. ELEVAZIOI	NE		
Classe Calcestruzzo	C28/35	Classe Acciaio	B450C		
Modulo Elastico CLS	323082 kg/cmq	Modulo Elastico Acc	2100000 kg/cmq		
Coeff. di Poisson	0,2	Tipo Armatura	POCO SENSIBILI		
Resist.Car. CLS 'fck'	280,0 kg/cmq	Tipo Ambiente	ORDINAR. XC2/XC3		
Resist. Calcolo 'fcd'	158,0 kg/cmq	Resist.Car.Acc 'fyk'	4500,0 kg/cmq		
Tens. Max. CLS 'rcd'	158,0 kg/cmq	Tens. Rott.Acc 'ftk'	4500,0 kg/cmq		
Def.Lim.El. CLS 'eco'	0,20 %	Resist. Calcolo'fyd'	3913,0 kg/cmq		
Def.Lim.Ult CLS 'ecu'	0,35 %	Def.Lim.Ult.Acc'eyu'	1,00 %		
Fessura Max.Comb.Rare	mm	Sigma CLS Comb.Rare	168,0 kg/cmq		

CARATTERISTICHE MATERIALI					
CAR	CARATTERISTICHE DEI MATERIALI				
Fessura Max.Comb.Perm	0,3	mm	Sigma CLS Comb.Perm	126,0	kg/cmq
Fessura Max.Comb.Freq	0,4	mm	Sigma Acc Comb.Rare	3600,0	kg/cmq
Peso Spec.CLS Armato	2500	kg/mc	Copriferro Netto	2,5	cm
CARA	TTERIS	TICHE	C. A. FONDAZION	ΝE	-
Classe Calcestruzzo	C28/3	35	Classe Acciaio	B4	150C
Modulo Elastico CLS	323082	kg/cmq	Modulo Elastico Acc	210000	0 kg/cmq
Coeff. di Poisson	0,2		Tipo Armatura	POCO S	SENSIBILI
Resist.Car. CLS 'fck'	280,0	kg/cmq	Tipo Ambiente	ORDINA	R. XC2/XC3
Resist. Calcolo 'fcd'	158,0	kg/cmq	Resist.Car.Acc 'fyk'	4500,0	kg/cmq
Tens. Max. CLS 'rcd'	158,0	kg/cmq	Tens. Rott.Acc 'ftk'	4500,0	kg/cmq
Def.Lim.El. CLS 'eco'	0,20	%	Resist. Calcolo'fyd'	3913,0	kg/cmq
Def.Lim.Ult CLS 'ecu'	0,35	%	Def.Lim.Ult.Acc'eyu'	1,00	%
Fessura Max.Comb.Rare		mm	Sigma CLS Comb.Rare	168,0	kg/cmq
Fessura Max.Comb.Perm	0,3	mm	Sigma CLS Comb.Perm	126,0	kg/cmq
Fessura Max.Comb.Freq	0,4	mm	Sigma Acc Comb.Rare	3600,0	kg/cmq
Peso Spec.CLS Armato	2500	kg/mc	Peso Spec.CLS Magro	2200	kg/mc
Copriferro Netto	2,5	cm			

DATI TERRAPIENO MURO 3			
Muro n.3			
DATI TERRAPIENO			
Altezza del terrapieno a monte nel punto di contatto col muro:	1,10	m	
Altezza del terrapieno a valle nel punto di contatto col muro:	0,65	m	
Inclinaz. media terreno valle(positivo se scende verso valle):	0	0	
Angolo di attrito tra fondazione e terreno	11	0	
Adesione tra fondazione e terreno	0,00	Kg/cmq	
Angolo di attrito tra fondazione e terreno in presenza acqua	11	0	
Adesione tra fondazione e terreno in presenza di acqua	0,00	Kg/cmq	
Permeabilita' Terreno	BASSA		
Muro Vincolato	NO		
Coefficiente BetaM	0,380		
Coefficiente di intensita' sismica orizzontale	0,080		
Coefficiente di intensita' sismica verticale	0,040		

DATI STRATIGR. MURO 3	
STRATIGRAFIA DEL TERRENO	
STRATO n. 1 : Spessore dello strato:	4.00 m
Angolo di attrito interno del terreno:	4,00 m 17 °
Angolo di attrito tra terreno e muro:	11 °
Coesione del terreno in condizioni drenate:	0,10 Kg/cmq
Adesione tra il terreno e il muro in condizioni drenate:	0,00 Kg/cmq 1850 Kg/mc
Peso specifico apparente del terreno in assenza di acqua: Coesione del terreno in condizioni non drenate:	1850 Kg/mc 0,40 Kg/cmq
Adesione tra il terreno e il muro in condizioni non drenate:	0,00 Kg/cmq
Peso specifico efficace del terreno sommerso:	850 Kg/mc
Coefficiente di Lambe per attrito negativo pali:	0,00
STRATO n. 2 :	
Spessore dello strato:	3,00 m
Angolo di attrito interno del terreno:	15 °
Angolo di attrito tra terreno e muro:	10 °

DATI STRATIGR. MURO 3			
STRATIGRAFIA DEL TERRENO			
Coesione del terreno in condizioni drenate:	0,40	Kg/cmq	
Adesione tra il terreno e il muro in condizioni drenate:	0,00	Kg/cmq	
Peso specifico apparente del terreno in assenza di acqua:		Kg/mc	
Coesione del terreno in condizioni non drenate:		Kg/cmq	
Adesione tra il terreno e il muro in condizioni non drenate:		Kg/cmq	
Peso specifico efficace del terreno sommerso:		Kg/mc	
Coefficiente di Lambe per attrito negativo pali: 0,00		0,00	
	•		

GEOMETRIA MURO 3				
MURO A MENSOLA IN CEMENTO ARMATO				
Altezza del paramento: 1,55 m				
Spessore del muro in testa (sezione orizzontale): 30 cm				
Scostamento della testa del muro (positivo verso monte):	0	cm		
Spessore del muro alla base (sezione orizzontale): 40 cm				

GEOMETRIA MURO 3			
FONDAZIONE DIRETTA			
Lunghezza della mensola di fondazione a valle:	40	cm	
Lunghezza della mensola di fondazione a monte:	130	cm	
Spessore minimo della mensola a valle:	30	cm	
Spessore massimo della mensola a valle:	30	cm	
Spessore minimo della mensola a monte:	30	cm	
Spessore massimo della mensola a monte:	30	cm	
Inclinazione del piano di posa della fondazione:	0	0	
Sviluppo della fondazione:	1,0	m	
Spessore del magrone:	20	cm	
Altezza del dente di fondazione:	10	cm	
Spessore minimo del dente di fondazione:	30	cm	
Spessore massimo del dente di fondazione:	30	cm	
Il dente di fondazione e' posizionato all'estremita' di monte			

CARICHI MURO 3		
SOVRACCARICHI SUL TERRAPIENO		
CONDIZIONE n.	1	
Sovraccarico uniformemente distribuito generalizzato:	0,50	t/mq
Sovraccarico uniformemente distribuito a nastro:	0,00	t/mq
Distanza dal muro del punto di inizio del carico a nastro:	0,00	m
Distanza dal muro del punto di fine del carico a nastro:		m
Sovraccarico concentrato lineare lungo lo sviluppo:	0,00	t/m
Distanza dal muro del punto di applicazione carico lineare:	1,00	m
Carico concentrato puntiforme:	0,00	t
Interasse tra i carichi puntiformi lungo lo sviluppo:		m
Distanza dal muro punto di applicazione carico puntiforme:	0,00	m
Sovraccarico uniformemente distribuito terrapieno a valle:	0,00	t/mq

COMBINAZIONI MURO 3		
Cond.	Descrizione	
Num.	Condizione	
1	PERMANENTE	

				C	OMBINAZ	IONI MUR	O 3								
	COMBINAZIONI DI CARICO S.L.U. A1														
Comb	Cond.1	Cond.2	Cond.3	Cond.4	Cond.5	Cond.6	Cond.7	Cond.8	Cond.9	Cond10	Sisma				
1	1,50										0,00				
2	1,00										1,00				

				C	OMBINAZI	ONI MUR	O 3				
			СОМВІ	NAZIO	NI DI	CARI	CO S.L.E	E. RAR	A		
Comb	Cond.1	Cond.2	Cond.3	Cond.4	Cond.5	Cond.6	Cond.7	Cond.8	Cond.9	Cond10	Sisma
1	1,00										

				C	OMBINAZI	ONI MUR	O 3				
			COMBI	NAZIO	NI DI	CARIO	CO S.L.E	. FRE	Q .		
Comb	Cond.1	Cond.2	Cond.3	Cond.4	Cond.5	Cond.6	Cond.7	Cond.8	Cond.9	Cond10	Sisma
1	1,00										

				C	OMBINAZ	ONI MUR	O 3								
	COMBINAZIONI DI CARICO S.L.E. PERM.														
Comb	Cond.1	Cond.2	Cond.3	Cond.4	Cond.5	Cond.6	Cond.7	Cond.8	Cond.9	Cond10	Sisma				
1	1,00														

							SPINTE A	A MONT	E MURO:	3 - Tabella	a Combi	nazioni:	A1						
						S	PINTE	DEL	TER	RAPIE	NO A	MON	NTE						
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis	C sif
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
1	1946	1079	0,49	1,96	0	3548	0,00	1,33	0	0	0,00	0,00	0	0	0,00	0,00	0,570	0,570	0,00
2	1711	1033	0,48	1,94	206	2665	0,90	1,32	0	0	0,00	0,00	0	0	0,00	0,00	0,527	0,693	0,00

						SPIN	ΓΕ Α VA	LLE MU	RO 3 - Ta	bella Cor	nbinazio	ni: A1						
						SPIN	TE D	EL 1	ΓERRA	PIENO	A V	ALLE						
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m		
1	676	84	0,22	0,06	0	210	0,00	0,25	0	0	0,00	0,00	0	0	0,00	0,00	1,742	1,74
2	607	81	0,22	0,06	-17	198	0,46	0,25	0	0	0,00	0,00	0	0	0,00	0,00	1,751	1,57

						S	PINTE A	MONTE	MURO 3	- Tabella	Combin	azioni: F	Rare						
	SPINTE DEL TERRAPIENO A MONTE																		
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis	C sif
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
1	1438	793	0,48	1,96	0	2661	0,00	1,33	0	0	0,00	0,00	0	0	0,00	0,00	0,570	0,570	0,00

-						SPINT	E A VAL	LE MUF	RO 3 - Tak	ella Com	binazio	ni: Rare						
	SPINTE DEL TERRAPIENO A VALLE																	
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m		
1	676	84	0,22	0,06	0	210	0,00	0,25	0	0	0,00	0,00	0	0	0,00	0,00	1,742	1,74

						S	PINTE A	MONTE	MURO 3	- Tabella	Combin	azioni: F	req.						
						S	PINTE	DEL	TER	RAPIE	NO A	. MON	NTE						
Cmb	mb Fx tot Fy tot H tot X tot Fx tp Fy tp H tp X tp Fx esp Fy esp H esp X esp Fx w Fy w H w X w K sta K sis C sif																		
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
1	1438	793	0,48	1,96	0	2661	0,00	1,33	0	0	0,00	0,00	0	0	0,00	0,00	0,570	0,570	0,00

						SPINT	E A VAL	LE MUR	O 3 - Tab	ella Com	binazior	ni: Freq.						
	SPINTE DEL TERRAPIENO A VALLE																	
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m		
1	676	84	0,22	0,06	0	210	0,00	0,25	0	0	0,00	0,00	0	0	0,00	0,00	1,742	1,74

						SF	PINTE A	MONTE	MURO 3	- Tabella	Combina	azioni: P	erm.						
	SPINTE DEL TERRAPIENO A MONTE																		
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis	C sif
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
1	1438	793	0,48	1,96	0	2661	0,00	1,33	0	0	0,00	0,00	0	0	0,00	0,00	0,570	0,570	0,00

						SPINTE	A VAL	LE MUR	O 3 - Tab	ella Comi	oinazion	i: Perm.						
						SPIN	TE D	EL 1	ERRA	PIENO	A V	/ALLE						
Cmb	b Fx tot Fy tot H tot X tot Fx tp Fy tp H tp X tp Fx esp Fy esp H esp X esp Fx w Fy w H w X w K sta K sis																	
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m		
1	676	84	0,22	0,06	0	210	0,00	0,25	0	0	0,00	0,00	0	0	0,00	0,00	1,742	1,74

	SPINTE DEL TERRAPIENO A MONTE																		
Cmb	Fx tot	Fy tot	H tot	X tot	Fx tp	Fy tp	H tp	X tp	Fx esp	Fy esp	H esp	X esp	Fx w	Fy w	Ηw	Χw	K sta	K sis	C sif
n.	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg/m	Kg/m	m	m	Kg	Kg	m	m			
2	1531	873	0,48	1,95	77	2663	0,91	1,33	0	0	0,00	0,00	0	0	0,00	0,00	0,559	0,612	0,00

VERIFICHE STABILITA' MURO 3											
VERIFICA AL RIBALTAMENTO											
Combinazione di carico piu' svantaggiosa:	2	A1									
Momento forze ribaltanti complessivo:	1145	Kgm/m									
Momento stabilizzante forze peso e carichi:	8050	Kgm/m									
Momento stabilizzante massimo dovuto ai tiranti:	0	Kgm/m									
Coefficiente sicurezza minimo al ribaltamento:	7,03										
LA VERIFICA RISULTA SODDISFATTA											

VERIFICHE STABILITA' MURO 3											
VERIFICA ALLO SCORRIMENTO											
Combinazione di carico piu' svantaggiosa:	2	A1									
Risultante forze che attivano lo scorrimento:	2175	Kg/m									
Risultante forze che si oppongono allo scorrimento:	4864	Kg/m									
Forza dei tiranti che si oppone allo scorrimento:	0	Kg/m									
Coefficiente sicurezza minimo allo scorrimento:	2,24										
LA VERIFICA RISULTA SODDISFATTA											

SOLLECITAZIONI MURO 3 - Tabella Combinazioni: A1

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	Ν	М	Т
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
1	DENTE FONDAZ.	1	0	180,0	1256	1	0
		2	10	180,0	1140	48	1066
1	MENS.FOND.MONTE	1	0	90,0	544	-3	-109
		2	30	90,0	-522	155	-200
		3	60	90,0	-522	114	-66
		4	90	90,0	-522	112	47
		5	120	90,0	-522	138	119
		6	130	90,0	-522	151	134
1	MENS.FOND.VALLE	1	0	-90,0	0	0	0
		2	30	-90,0	0	-117	-784
		3	40	-90,0	0	-208	-1055
1	PARAMENTO	1	0	0,0	0	0	0
		2	30	0,0	232	-1	0
		3	60	0,0	479	1	73
		4	90	0,0	740	49	305
		5	120	0,0	1016	181	651
		6	150	0,0	1306	431	1110
		7	155	0,0	1356	486	1197

SOLI FCITAZIONI MURO 3.	. Tabella Combin	azioni: A1

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	N	М	T
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
2	DENTE FONDAZ.	1	0	180,0	910	-1	0
		2	10	180,0	802	63	1379
2	MENS.FOND.MONTE	1	0	90,0	484	-2	-97
		2	30	90,0	-877	190	-408
		3	60	90,0	-858	49	-509
		4	90	90,0	-840	-111	-553

SOLLECITAZIONI MURO 3 - Tabella Combinazioni: A1

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	N	M	Т
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
		5	120	90,0	-822	-281	-574
		6	130	90,0	-816	-338	-576
2	MENS.FOND.VALLE	1	0	-90,0	0	0	0
		2	30	-90,0	-18	-126	-834
		3	40	-90,0	-24	-223	-1107
2	PARAMENTO	1	0	0,0	0	0	0
		2	30	0,0	223	2	19
		3	60	0,0	460	13	117
		4	90	0,0	711	78	378
		5	120	0,0	975	237	751
		6	150	0,0	1254	521	1234
		7	155	0,0	1302	583	1326

SOLLECITAZIONI MURO 3 - Tabella Combinazioni: Rare

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	N	M	Т
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
1	DENTE FONDAZ.	1	0	180,0	1012	0	0
		2	10	180,0	906	26	608
1	MENS.FOND.MONTE	1	0	90,0	407	-2	-82
		2	30	90,0	-201	72	-200
		3	60	90,0	-201	12	-197
		4	90	90,0	-201	-47	-202
		5	120	90,0	-201	-110	-222
		6	130	90,0	-201	-133	-233
1	MENS.FOND.VALLE	1	0	-90,0	0	0	0
		2	30	-90,0	0	-104	-693
		3	40	-90,0	0	-185	-927
1	PARAMENTO	1	0	0,0	0	0	0
		2	30	0,0	232	-1	0
		3	60	0,0	479	-1	50
		4	90	0,0	740	31	217
		5	120	0,0	1016	123	470
		6	150	0,0	1306	302	811
		7	155	0,0	1356	342	877

SOLLECITAZIONI MURO 3 - Tabella Combinazioni: Freq.

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	Ν	М	Т
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
1	DENTE FONDAZ.	1	0	180,0	1012	0	0
		2	10	180,0	906	26	608
1	MENS.FOND.MONTE	1	0	90,0	407	-2	-82
		2	30	90,0	-201	72	-200
		3	60	90,0	-201	12	-197
		4	90	90,0	-201	-47	-202
		5	120	90,0	-201	-110	-222
		6	130	90,0	-201	-133	-233
1	MENS.FOND.VALLE	1	0	-90,0	0	0	0
		2	30	-90,0	0	-104	-693
		3	40	-90,0	0	-185	-927

SOLLECITAZIONI MURO 3 - Tabella Combinazioni: Freq.

		SOLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	N	M	Т
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
1	PARAMENTO	1	0	0,0	0	0	0
		2	30	0,0	232	-1	0
		3	60	0,0	479	-1	50
		4	90	0,0	740	31	217
		5	120	0,0	1016	123	470
		6	150	0,0	1306	302	811
		7	155	0,0	1356	342	877

SOLLECITAZIONI MURO 3 - Tabella Combinazioni: Perm.

	S	OLLI	ECITAZI	ONI	MURO		
Cmb	Tipo di	Sez.	Distanza	Angolo	N	М	T
N.r	Elemento	N.ro	cm	0	Kg	Kgm	Kg
1	DENTE FONDAZ.	1	0	180,0	1012	0	0
		2	10	180,0	906	26	608
1	MENS.FOND.MONTE	1	0	90,0	407	-2	-82
		2	30	90,0	-201	72	-200
		3	60	90,0	-201	12	-197
		4	90	90,0	-201	-47	-202
		5	120	90,0	-201	-110	-222
		6	130	90,0	-201	-133	-233
1	MENS.FOND.VALLE	1	0	-90,0	0	0	0
		2	30	-90,0	0	-104	-693
		3	40	-90,0	0	-185	-927
1	PARAMENTO	1	0	0,0	0	0	0
		2	30	0,0	232	-1	0
		3	60	0,0	479	-1	50
		4	90	0,0	740	31	217
		5	120	0,0	1016	123	470
		6	150	0,0	1306	302	811
		7	155	0,0	1356	342	877

											VER	IFICHE	MURC	3								
	VERIFICHE DI RESISTENZA MURO																					
Sez	Sez El Dist H B Xg Yg Ang Cmb Nsdu Msdu A sin A des An. An. Nrdu Mrdu Cmb Vsdu Vrduc Vrduc Vrdus A sta V													Verif.								
N.	√l em cm cm cm cm cm ° Fie Kg Kgm cmq cmq s° d° Kg Kgm tag Kg Kg Kg cmq/m																					
1	1 1 0 30 100 65 185 0 1 0 0 0,0 0,0 4 0 0 0 1 0 0 0 OK																					
2	1	30	32	100	64	155	0	2	223	2	5,7	5,7	4	0	223	6157	2	19	13251	0		OK
3	1	60	34	100	63	125	0	2	460	13	5,7	5,7	4	0	460	6608	2	117	13834	0		OK
4	1	90	36	100	62	95	0	2	711	78	5,7	5,7	4	0	711	7068	2	378	14409	0		OK
5	1	120	38	100	61	65	0	2	975	237	5,7	11,3	4	0	975	14692	2	751	15296	0		OK
6	1	150	40	100	60	35	0	2	1254	521	5,7	11,3	4	0	1254	15581	2	1234	15677	0		OK
7	1	155	40	100	60	30	0	2	1302	583	5,7	11,3	4	0	1302	15731	2	1326	15740	0		OK

	VERIFICHE MURO 3																					
									V	ERIFIC	HE D	I RE	SIS	ΓE N.	ZA M	URO						
Sez	EI	Dist	Н	В	Xg	Yg	Ang	Cmb	Nsdu	Msdu	A sin	A des	An.	An.	Nrdu	Mrdu	Cmb	Vsdu	Vrdu c	Vrdu s	A sta	Verif.
N.	em	cm	cm	cm	cm	cm	۰	Fle	Kg	Kgm	cmq	cmq	s °	d°	Kg	Kgm	tag	Kg	Kg	Kg	cmq/m	
1	4	0	30	100	0	15	-90	1	0	0	0,0	0,0	0	0	0	0	0	0	0	0		OK
2	4	30	30	100	30	15	-90	2	-18	-126	5,7	5,7	0	0	-18	4461	2	-834	36877	0		OK
3	4	40	30	100	40	15	-90	2	-24	-223	5,7	5,7	0	0	-24	4459	2	-1107	36877	0		OK

	VERIFICHE MURO 3																					
	VERIFICHE DI RESISTENZA MURO																					
Sez	EI	El Dist H B Xg Yg Ang Cmb Nsdu Msdu A sin A des An. An. Nrdu Mrdu Cmb Vsdu Vrduc Vrdus A sta Verif.																				
N.	em	cm	cm	cm	cm	cm	٥	Fle	Kg	Kgm	cmq	cmq	s °	d°	Kg	Kgm	tag	Kg	Kg	Kg	cmq/m	
1	5	0	30	100	210	15	90	1	544	-3	0,0	0,0	0	0	0	0	1	-109	0	0		OK
2	5	30	30	100	180	15	90	2	-877	190	5,7	5,7	0	0	-877	5600	2	-408	12661	0		OK
3	5	60	30	100	150	15	90	1	-522	114	5,7	5,7	0	0	-522	5646	2	-509	12661	0		OK
4	5	90	30	100	120	15	90	1	-522	112	5,7	5,7	0	0	-522	5646	2	-553	12661	0		OK
5	5	120	30	100	90	15	90	2	-822	-281	5,7	5,7	0	0	-822	5607	2	-574	12661	0		OK
6	5	130	30	100	80	15	90	2	-816	-338	5,7	5,7	0	0	-816	5608	2	-576	12661	0		OK

VERIFICHE MURO 3

	VERIFICHE DI RESISTENZA MURO																					
Sez	EI	Dist	Н	В	Xg	Yg	Ang	Cmb	Nsdu	Msdu	A sin	A des	An.	An.	Nrdu	Mrdu	Cmb	Vsdu	Vrdu c	Vrdu s	A sta	Verif.
N.	em	cm	cm	cm	cm	cm	۰	Fle	Kg	Kgm	cmq	cmq	s °	d°	Kg	Kgm	tag	Kg	Kg	Kg	cmq/m	
1	6	0	30	100	195	-10	180	1	1256	1	0,0	0,0	0	0	0	0	0	0	0	0		OK
2	6	10	30	100	195	0	180	2	802	63	2,5	2,5	0	0	802	2162	2	1379	119742	0		OK

						VERIFIC	CHE MURO	3					
	FESSURAZIONE MURI												
1	Muro	Ele	Tipo	Cmb	Sez.	N fes	M fes	Dist.	Wcalc	W Lim	Verifica		
	N.		Comb	fes	fes	Kg	Kgm	cm	mm	mm			
	3	6	Freq	1	2	906	26	28	0,00	0,40	OK		
			Perm	1	2	906	26	28	0,00	0,30	OK		
	3	5	Freq	1	6	-201	-133	21	0,02	0,40	OK		
			Perm	1	6	-201	-133	21	0,02	0,30	OK		
	3	4	Freq	1	3	0	-185	21	0,02	0,40	OK		
			Perm	1	3	0	-185	21	0,02	0,30	OK		
	3	1	Freq	1	7	1356	342	13	0,00	0,40	OK		
			Perm	1	7	1356	342	13	0,00	0,30	OK		

	VERIFICHE MURO 3														
	TENSIONI DI ESERCIZIO MURI														
Muro	Ele	Tipo	Cmb	Sez.	Νσο	М σс	σς	σc max	Cmb	Sez.	N σf	M σf	σf	of max	Verifica
N.		Comb	σc	σc	Kg	Kgm	Kg/cmq	Kg/cmq	σf	σf	Kg	Kgm	Kg/cmq	Kg/cmq	
3	6	rara	1	2	906	26	0,5	168,0	1	2	906	26	-1	3600	OK
		perm	1	2	906	26	0,5	126,0							OK
3	5	rara	1	6	-201	-133	2,2	168,0	1	6	-201	-133	111	3600	OK
		perm	1	6	-201	-133	2,2	126,0							OK
3	4	rara	1	3	0	-185	3,3	168,0	1	3	0	-185	128	3600	OK
		perm	1	3	0	-185	3,3	126,0							OK
3	1	rara	1	7	1356	342	2,6	168,0	1	7	1356	342	35	3600	OK
		perm	1	7	1356	342	2,6	126,0							OK

VERIFICA PO	ORTANZA I	MURO 3				
VERIFICHE POR	TANZA	FONDA	AZIONE			
Numero dello strato corrispondente alla fondazione	e:				1	
Combinazione di carico piu' gravosa:					1	A1
Scarico complessivo ortogonale al piano di posa:					9,03	t/m
Scarico complessivo parallelo al piano di posa:					1,27	t/m
Eccentricita' dello scarico lungo il piano di posa:					-0,08	m
Larghezza della fondazione:					2,50	m
Lunghezza della fondazione:					1,00	m
Valore efficace della larghezza:					2,34	m
Peso specifico omogeneizzato del terreno:					1850	Kg/mc
Pressione verticale dovuta al peso del terrapieno a					1,20	t/mq
VERIFICA IN CO	_					
Fattori di capacita' portante: Ng =	3,1726	Nq =	4,7721	Nc =		,3381
Fattori di forma: Sg =	1,4267	Sq =	1,4267	Sc =		,8534
Fattori di profondita: Dg =	1,0000	Dq =	1,1161	Dc =		,1469
Fattori inclinazione carico: Ig =	0,7055	Iq =	0,8211	lc =		,7736
Fattori inclinazione base: Bg =	1,0000	Bq =	1,0000	Bc =		,0000
Fattori incl. piano campagna: Gg =	1,0000	Gq =	1,0000	Gc =		,0000
Pressione media limite:					35,33	t/mq
Sforzo normale limite:					58,96	t/m

VERIFICA POI	RTANZA MURO 3	
VERIFICHE PORT	ANZA FONDAZIONE	
Coefficiente di sicurezza: (Sf.Norm.Lim/Scar.Compl	.Ortog.)	6,53
VERIFICA IN COND	IZIONI NON DRENATE	
Fattore di capacita' portante: Nco =	5,1416 Nqo =	1,0000
Fattore di forma: Sco =	1,4673	1,0000
Fattore di profondita: Dco =	1,1455 Dqo =	1,0000
Fattore inclinazione carico: Ico =	0,9656	1,0000
Fattore inclinazione base: Bco =	1,0000 Bqo =	1,0000
Fattore incl. piano campagna: Gco =	1,0000 Gqo =	1,0000
Pressione media limite in condizioni non drenate:		34,58 t/mq
Sforzo normale limite in condizioni non drenate:		57,71 t/m
Coefficiente di sicurezza in condizioni non drenate:		6,39
_	ULTA SODDISFATTA	
VERIFICHE C	EDIMENTI SLD	
Combinazione di carico SLD piu' gravosa:		2
Scarico complessivo ortogonale al piano di posa:		7,60 t/m
Sforzo normale limite in condizioni drenate:		52,72 t/m
Coefficiente di sicurezza in condizioni drenate:		6,94
Sforzo normale limite in condizioni NON drenate:		63,23 t/m
Coefficiente di sicurezza in condizioni NON drenate		8,32
LA VERIFICA RISULTA	SODDISFATTA	

		CED	IMENTI	TERR	ENO A	MON.	TE - MU	IRO N.3	
-	Tipo	Comb.	Sp.muro	Volume	DistMax	Ced.0/4	Ced.1/4	Ced.2/4	Ced.3/4
С	omb.	nro	mm	mc	m	mm	mm	mm	mm
	SLD	2	0,0	0,000	3,54	0,1	0,0	0,0	0,0
	SLD	2	0,0	0,000	3,54	0,1	0,0	0,0	0,0
	SLD	2	0,0	0,000	3,54	0,1	0,0	0,0	0,0

COMPUTO MATERIALI MURO 3										
COMPUTO DEI MATERIAL	. I									
Volume di calcestruzzo per metro di muro:	1,203 mc/m									
Peso di acciaio per metro di muro:	60,1 Kg/m									
Superficie casseforme per metro di muro:	3,9 mq/m									
Sviluppo complessivo del muro:	1,00 m									
Volume di calcestruzzo complessivo per il muro:	1,203 mc									
Peso di acciaio complessivo per il muro:	60,1 Kg									
Superficie casseforme complessiva per il muro:	3,9 mg									
Rapporto peso acciaio / volume calcestruzzo del muro:	49,9 Kg/mc									
	, ,									

COMPUTO MATERIALI MURO 3		
DISTINTA DELLE ARMATURE		
- Diametro φ Sviluppo complessivo barre per metro di muro:	8 34,30	mm m/m
Peso totale barre per metro di muro:	13,5	Kg/m
- Diametro φ	12	mm
Sviluppo complessivo barre per metro di muro:	52,37	m/m
Peso totale barre per metro di muro:	46,5	Kg/m